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Abstract

KENNETH N. HIGHTOWER: Testing for Structural ('hange and Nonstationarity
{Under the direction of William R. Parke}

Stationarity and structural stability are two of the most important issnes in time series
econometrics. This dissertation is a study of the relationship between testing for stationarity
and testing for structural change. Specifically. it is shown that a commonly used test for
stationarity against the aiternative of a unit root proposed by Kwiatkowski. Phillips. Schmidt.
and Shin (1992} (KPSS) is algebraically equivalent to a member of a class of tests against
structural change at an unknown change-point suggested by Andrews and Ploberger (199-4).
We extend this class by proposing two uew tests for structural change. The maximum value
of the KPSS test statistic is derived. and shown to be a non-stochastic cosine function. This
result is used to study the asymptotic local power of the test for various alternatives, ineluding
structural breaks. unit roots, and fractional integration.

A new class of tests is proposed to distinguish between structural change and unit roots.
It involves a two-stage testing methodology that looks at the properties of sub-samples of
the data in a second-stage test. The basic idea is that the subsample results should show a
localized rejection in the case of a single structural break and widespread rejection in the case
of a unit root.

Finally, we examine the empirical properties of Treasury securities. We find evidence
of persistence in returns, vields and terin-premia, but no evidence for persistence in excess
returns. \We use the implications above to explore whether the persistence in U.S. debt market
returns and yields can be explained through structural change. To this end we louk at several
methods of splitting the series into sub-samples and testing fur persistence within sub-samples.
The idea. similar to that pursued by Lobato and Savin (1998} for stock returns and squared
returns. is that if the full-sample results are spuriously induced by structural instability. there
should not be any evidence of long memory in the sub-samples. We find that the evidence of

long memory remains even after accounting for underlying structural changes.
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What is a man.
If his chief yood and market of his time
Be but to sleep and feed? a beast, no more.
Sure. he that made us with such larye discourse.
Looking be forr and after. gate us not
That cupability and god-like reason
To fust tn us unused. Now. whether it be
Be stiul oblivion. or some craven seruple
Of thinking too precisely on the event,
A thought which, quarte r'd. hath but one part wisdom
And ever three parts cocard. I do not knonw
Why yet [hive to say "This thing's to do:’
Sith [ hare cause and wdl and strength and means
To do't.

Hamlet. Act [V Scene iv
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To my locing wife Jeanine :
you are my cause and will and strength and means.
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Chapter 1

Introduction

Stable relationships among variables are the fuundation for nearly all economic theories. Sta-
bility is important because without it conclusions drawn from economic analyses can be mis-
leading or worthless. The most common assumptions in economic models are ones that restrict
the structure to be stable over time and/or across observations. lKnown violations of these
assumptions can be accounted for by modeling any changes in structure. Therefore. it is not
surprising that nearly all serious empirical analyses begin by either explicitly or implicitly
applying tests for stability.

For these reasons, stationarity and structural stability are two of the most important issues
in time series econometrics. Over the past decade, two large literatures have developed arour.i
testing for each of these phenomena. Unit root testing was pioneered by Dickey and Fuller
{Fuller. 1976) and has been extended by many others who have devised test statistios to divine
whether or not a series is [(1}. or in the common terminology, has a unit root. \ similar idea
was proposed by Kwiatkowski. Phillips. Schmidt. and Shin (1992). hereafter KPSS, 1o test for
[{0). or stativnary. data. The properties of these statistics have been exhaustively explored by
many researchers,

The origins of structural stability tests in econometrics can be traced back to Chow (19601,
These types of tests traditionally took the hypothesized break point as known a priori. Re-
cently. Andrews (1993) and Andrews and Ploberger (1994 developed a class of tests that
take the break point as unknown. thus explicitly incorporating the “eye-balling™ of all possible
break points that has been a common criticism isee Christiano. 1992) of Chow type structural

break tests.
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In Chapter 3 we investigate the relationship between a commonly used test of stationarity
and tests of structural change. We show that the commonly used Kwiatkowski. Phillips.
Schmidt. and Shin (1992) (KPSS) test for stationarity vs. a unit root emerges as a special
case from a framnework that Andrews and Ploberger (1994) propose to test for a structural
change when the change-point is unknown. We extend the Andrews and Ploberger framework
to include two new test for structural change. which we denote Frp~. and Sups. For a series
yr = re +u, where r, is long memory and u, is stationary, the tests are all based on the partial
SUMfIS, N = Z::l(y, — §). of the residuals from a regression of y, on a constant. Our new tests
are based on functionals that weight each test of structural change at point =. LM =i, by the
weighting function Jix) = 7(1 — 7). [n this context. the KPSS test is shown to occupy a niche

we denote, 1ry~. The new statistics are given below

=2 r .
[ -Z(:l ‘\I.’

RTTR R — TR

(6

.- r - R
= ; pa— ') _ S(_,I "f. t '
Frps = In 7 exp T ) T | — I_)

SupNy = sup — .
te1 1) Iadgey

where 5471 is a kernel-based estimate of the fong-run variance of u,. These tests compare
to the Andrews (1993) and Andrews and Ploberger (1994 tests AeglL Mizgr, Frpl Mi=yr.
and Supl Mixp) where 7y is a trimming parameter and the LM (71 statisties are given equal
weighting (i.e. J{zi = 1).

Our new tests have some power advantages when a break occurs in the middle of the sample
as well as for the case of a une-time structural break that is uniformly distributed within the
sample. We also investigate the properties of both types of tests under the alternatives of
fractional integration and a unit root. An interesting result is that there is very little difference
in the performance of the tests across alternatives. In fact. a test we denote AH BT (1/2) for
the ~ad hoe™ break test for a structural break in the middle of the sample has close to the
power of the 1rgS/KPSS test for a unit root alternative.

The similarity between testing outcomes has an important implication for empirical re-

searchers. \ rejection for a stationarity test does not imply a unit root. Likewise, a rejection
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of a test for structural change does not imply a break. This is not merely a loss of power. The
two types of test are fundamentally testing for the same thing. Instead. a rejection of either
test implies that the series is not short memory.

Chapter 1 looks at the kind of processes that yield large values of the KPSS statistic. We
find that the KPSS test normalized by the sample size. T. has a maximum value and we derive
the process that produces this value for both the demeaned. 17,. and detrended. 7)-. versions
of the test. We show that although the test is designed with the unit root alternative in mind.
the maximum value is obtained for a non-stochastic cosine function. Specifically. we show that
max T}, = =72 for the process y = cos(xt/T). while maxT~'ij. = (25)~¢ for the process
yr = cos(2xt/T). These cosine functions provide benchmarks for other possible alternative
hypotheses. and they give a clear picture of the types of realization~ that actually trigger large
values for 7, and 7j-. They show that 7, is most sensitive to a large change in the value of y,
between the beginning and the end of the sample and that . is most sensitive to data with a
complete cycle in the data period.

These extreme value results establish a framework for studying the power of the KPSS
tests for alternatives that include unit roots and structural breaks. We consider an alternative

hypothesis based on the process
r=Io+ Y

composed of the sum of a short memory process re and a long memory process y,. The scalar
~r sets the distance between the null and the alternative for a sample of size I'. We show that
the power for a small 57 i> closely related to the extreme value results for the process y; alone.

Chapter 3 investigates the central problem raised by the results from Chapter 3. Namely.
how can we distinguish between structural change and unit roots if the commonly used tests
vield nearly indistinguishable results for the two alternatives”? We propose a two-stage testing
methodology that looks at the properties of sub-samples of the data in a second-stage test.
That is. given a Stage | rejection of a stationarity /structural change test A, we propose calcu-
lating A for sub-samples of the data. If AMm. k) is a statistic with a null hypothesis of short

memory applied to a subsample starting in period m and of length k. Our proposed subsample
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statistic for testing the hypothesis Stage [l null hypothesis of a unit root process is given by

avg A (m. k)
meM
sup A (m k)
meM

\ig) =

where ¢ = k/T is constant and M = [1.T - k]. The basic idea is that the subsample results
should show a localized rejection in the case of a single structural break and widespread
rejection in the case of a unit root.

We derive the distribution of \,(q) under a unit root for several choices of short memory
statistics A ¢m. k). including several examined in Chapter 3. We show that \,(q) is consistent
against a one-time structural change where the change-point is uniformly distributed.

Our Stage 11 test performs reasonably well. particularly when the probability of a Stage 1
rejection is high. We find that the performance of the test can be markedly improved by using
a hybrid version that uses different \, in the Stage [ and Stage I tests. The best performing
test is one that combines the supl M test in Stage | with the A BTi1/2) in Stage II. This
is because, while the . VH BT(1/2) has the best properties for Stage 1L it suffees from a loss of
power in the Stage | test.

Chapter 6 uses the implications from Chapter 3 to explore whether the persistence in
U.S. debt market returns and yields can be explained through structural change. Unlike
equity returns. we find strong evidence for long memory in US. Treasury securities. We also
document this persistence for vields and term-premia but find no evidence of long memory in
excess returns. To test if structural change is causing this. we =plit the series in a number of
ways to test the sub-samples for long memory. First. we use a split in October 1979 when the
FED changed its operating procedure. We follow by splitting using a sequential break-point
estitmator of Bai and Perron (2001) on a monetary svariable. M2, The resulting break dates
are then applied to the return and yield series. Evidence of long memory in the full-sam»le
returns but not in the full-sample excess returns motivates a Fischer type story where breaks
in inflation effect returns but not excess returns. Again. we use the sequential break-point
estimator to split the inflation series and apply the results to returns and yields. Finally. we
estimate the conditional state probabilities from a Hamilton (19901 two-state Markov-switching
model. We use these probabilities to split the samples into contiguous regines.

Overall. we find very little support for the structural break hypothesis. Persistence remains
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in nearly all of the sub-samples across the different splits. implying that long memory models
should be seriously considered when modeling debt market returns. yields. and term-premia.
This is finding has important implications for term structure models, bond pricing. and fixed
income derivative models. The Markov-switching models show some promise, although in
many cases the states change too frequently to produce reliable sub-samples in which to test.
This. of course. may very well be seen as evidence to support the view that there is little

observational difference between long memory and Markov-switching models.
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Chapter 2

Literature Review

This chapter briefly reviews long memory. stationarity. and structural change to provide back-

ground and context for the issues explored in this dissertation.

2.1 Long Memory

Normally. only integer powers of d are considered in ARIM A (p.d.4i models. but there is no
mathematical or statistical requirement that o take on ouly integer salues (eg.. d=1 vields a
first-difference model). In a fractionally-differenced model. d can take on non-integer values
and the resulting time series can exhibit some particularly interesting dependencies. Granger
and Joyeux (19%0) and Hosking (19%1) show that extending the lag operator to non-integer
powers of d results in a well-defined time series that is fractionally integrated of order d. The
differencing operator may be written

N

ql—[,)“:Z1—l}"<d>l.“ (2.0
k=0 k

leading to the fullowing representation of a time series where p = ¢ = 0:

N .
) ik —d)
(- [.,l"y, = T o Y-k

Here, ' is the usual gamma function.
In his excellent survey paper. Baillie (1996) reviews a number of different long-memory

models. One simple model is an ARFIMA {0.d.0) process given by

th= Ly ye — i =« (2.3
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This miodel is studied in Granger (1980). Granger and Joyeux (1980). and Hosking (1931},
Their work shows than when d < 5. the series has finite variance. but for d = .3. the series has
infinite variance. The time series is stationary and invertible when -5 < d < 5. For d = 5.
standard Box-Jenkins techniques will indicate that differencing is required and provided that
d < 1. differencing will produce a series whose spectrum is zero at zero frequency. This

heavily-used model is a special case of an ARFIM.A (p.d.q) process given by
LMl = LYy — 1) = Ot Le, 2.0

where p = ¢ = 0.

Fractionally-differenced time-series models have very interesting long-run furecasting prop-
erties. .\ fractional white noise series y, ~ [idi may be represented as an MA( ) process
where the moving average coetlicients decline slowly following the form b, ~ .-1:"' where .1
i~ a constant. .\ stationary ARMA(p. ¢) with infinite p and  will have coetficients that de-
cline at least exponentially: b, ~ 487, One important implication of these stark differences
in coefficient decay rates is that a fractionally -differenced model may provide better long-run

forecasts from a very simple miodel compared to ARMA(p. gy models where pand ¢ are large.

2.2 Stationarity

A method for testing for stationarity in economic time series proposed by Kwiatkowski.
Phillips. Schmidt, and Shin (1992). hereafter KPSS. has become a very popular analy tic tool
among applied econometricians. They tackle the unit root testing problem from the opposite
direction of the ubiquitous tests of Dickey and Fuller. Whereas the Dickey -Fuller test and it~
variants starts from the null hypothesis of a unit root. the KPSS test has a null of stationarity.
The test is an LM test that a series based on the sum of a deterministic trend. random walk.
and stationary error. More formally let y,. t = |. ... T be the observed series to be tested for

stationarity. Assume that y, can be decomposed as:
Y =St+r + e (2.0)
where

re =re+ u;
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and ¢, and u, are iid (0.7}, iid (0.02) respectfully. Under the null hypothesis of stationarity.
0! = 0. The computation of the test is quite simple. Let ¢ t = 1. ... T be the residuals from
the regression of y on an intercept and/or a time trend. Let s°(£) be an estimate of the long
cun variance. [f we define the partial sum process of the residuals:
t
.\}:Zf.. t=1.....T
=1

then the KPSS test statistics are given by:

pg=T" Z.‘}z/.ﬁ"u‘v

for tests based on the rexiduals from a level (5,) or time trend (1-) regression.

The distribution of the test statistic converges to a functional of a Brownian Bridge. The
estimator of the long run variance is of the type suggested by Newey and West (19871, They
tabulate upper tail critical values for the two distributions and apply the tests to the Nelson
and Plosser (1982} data set.

Several other tests along the same vein were suggested previously by Nvblom and Makeldinen
(19%30, Nyblom (19%6, 19891, and Nabeya and Tanaka (198%1. These were, however, generally
derived under more restrictive assumptions on the error distribution that are unlikely to hold
in the interesting cases in economic data. Specifically. KPSS allow for fairly geveral depen-
dence in the error structure under the null hypothesis of stationarity. They find that under
regularity conditions like those of Phillips and Perron ¢ 19885, a heteruscedastic autocorrelation
consistent {HAC estimator of the long run variance proposed by Andrews (19911 accounts for
any short term dependence.

Leybourne and McCabe (1994) take another approach in accounting for short term dy-
namics in the error structure. They derive a parametric stationarity test using the partial
summs of residuals from an ARIMA(p.1.1) model. This test is similar in spirit and distribu-
tion under the null to the KPSS test of stationarity. In fact. it is convenient to think of the
Leybourne-McC'abe test relating to the KPSS test as the ADF test for a unit root relates
to the non-parametric Phillips and Perron (1988} unit root test. The stationarity tests have
sitnilar size and power, however the Levbourne-Mc(‘abe test is not as sensitive to the choice
of p > p* as the KPSS test is to the choice of the lag truncation parameter f in the estimate

of the long-run variance.
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Lee and Schmidt {1996) show that the KPSS test is consistent against stationary long
memory alternatives. such as /(d) processes for d € (—=0.5.0.5). d £ 0. It can therefore be
used to distinguish short memory and long memory stationary processes. The power of the
KPSS test in finite samples is found to be comparable to that of modified rescaled range test
(Lo. 1991). Their results show that a rather large sample size. such as T = 1000. will be
necessary to distinguish reliably between a long memory process and a short memory process
with comparable short-term autocorrelation.

Lee and Amsler (1997) derive the asymptotic distribution of the KPSS (1992} statistic
under nonstationary long memory (0.5 < d < 1i. They find that its order in probability is the
same under nonstationary long memory as under a unit root. [t cannot. therefore. distinguish
consistently between the two cases.

Lee. Huang. and Shin (1997} examine the effect of a structural break on stationarity tests,
Previous work has shown that stationarity tests suffer from size distortion problems if a struc-
tural break exists but is ignored. This problem parallels the power loss problem of unit root
tests ignoring an existing break. They find that the distributions of stationarity tests are
asymptotically invariant to the exclusion of the existing break under the alternative hypothe-

~is of a unit root.

2.3 Structural Change

Two general tests for structural change that are easy to compute and frequently used in practice
are the CUSUM and CUSUM of squares (CUMSUMSQ) test statistios suggested by Brown.,
Durbin. and Evans (1975). The tests are based on recursive residuals and are quite general in
that they do not require specification of the type or timing of the structural change.

The t'* recursive residual. ¢,. can be thought of as the «r post forecast error for y, when a
regression is estimated using only the first -1 observations. If u, is the recursive residual sealed
by the forecast variance. then u, ~ V{0.0°) and E(w,. w,)=0 for all r # 5. The CUSUM test
is based on the cumulated sum of these scaled residuals and the test is performed by plotting
this cumulated sun: against time and observing whether or not it strays outside of confidence
bands fur the appropriate significance level. The CUSUMSQ test is formed in a similar fashion.

Ploberger and Kramer (1992) extend the distribution theory of CUSUM-type tests from

9
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recursive residuals to OLS residuals and show that the distributions go to functionals of a
Brownian bridge. In this sense. CUSUM-type tests are closely related to the KPSS test for
stationarity.

One drawback of CUSUM-type tests is that, as general tests of structural change. they are
not as powerful as Chow-type tests that specify specific break points. However. Chow tests
lose much of this advantage if the break point is unknown.

Andrews (1993} addresses this issue by formulating a general test for parameter instability
and structural change with unknown change point in nonlinear parametric models. His tests
are LM, LR. and Wald tests based on the generalized method of momenrs (GMM) estimators.

The tests take the form

sup LMp(T)
vell

where L Mpr(7)is a test for structural change at time = € [, where [ is a subset of (0.1, This
statistic formally models one of the common criticisins of tests for structural change. namely
that the best candidate for a break is often picked a prior.

The distribution is given by
nml.l\( Btz = 2B 10V I Btz = s B bayst]l = =]
Te

where 3, is a pvector of Brownian motion. p being the number of parameters that change
under the alternative hypothesis. The distribution depends on I, the set of possible change
points. This set imust be bounded away from the endpoints. He tabulates critical values for
various values of p and [I.

Andrews and Ploberger (1994) consider optimal tests for parameter vector constancy when
the likelthood function depends on an additivnal parameter under the alternative. \ classic
example of this problen is testing for a one time structural change where under the alternative

the distribution depends on the breakpoint m. The optimal test statistic is given by
- \—p/2 I ¢ R R
ErpLMr =(1l+¢)7F/° fexp| -c——LMrix) ) dJ(x)
20+4¢

where LMr(x) is the standard test for a break at time 7 and J{7} is a weight function over
the set of possible breakpoints which may be given the interpretation of a Bayesian prior.
The statistic depends critically on the parameter ¢ which for larger values of ¢ gives more

weight to alternatives where the break size. .1, is large. Taking the normalized limit as ¢ = 0
4 8 a

10
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vields the “average L\~ statistic which is designed for alternatives close to the null.

m A Erpl My, - 1) /¢ :/L.\Iﬂ.’.)dJ(:)

c—=0

For different models. a variant of this statistic has been considered by, among others. Nyblom
(1939).

At the other extreme. the normalized statistic as ¢ — x is given by
- » - l N
lim log (l 1 + r)’/‘krp[..\lrr) = log/vxp (;L.\IH:)) dJ(7)

Note further, that if ¢/{1 + ¢} is replaced by r > 0. the norialized statistic as r = ~x is the

supl M statistic considered by Andrews {1993)

lim dog Erpl My v /r = sup LMrix)
r— cell®

The latter test ix not an optimal test of the sort considered. The supl M test directs power
against extreme alternatives.

Andrews, Lee, and Ploberger (19961 derive finite-sample optimal tests that generalize \n-
drews and Ploberger (199-0) for one or more change points at unknown times in a multiple
normal linear regression model with fixed regressors. More generally. these tests may be used
to test the null of parameter constancy against a very broad range of alternatives  parameter
changes of a less specific nature. For instance martingale parameter changes similar to that
studied by Nyblom (19%9).

They suggest the use of the ¢+ rpf” version of the test (¢ = ~i. The statistics are constructed
from

(T — sy/(Tmey) LM()
(1= LM(=) /T

l'"(,‘r) =

where 1 is the number of change points and ¢ is the number of parameters that change under

the alternative hypothesis. The optimal statistics are then:
p

ErpF. = (1 + ,-:,-mn/) Ezng-xp (%m[‘(ﬁi) dJ(T)
T

Two useful normalized limiting statistics are

argF = lim 2 ExpFe = L/ieme) = Y Fizidim
vell

11
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and
erpF = rl_i."l log (H + c)"“/ZErch) = log Z exp (L’,rﬂ rr}) Jim
rell -

They compare power for many statistics across a range of alternatives. Twou of their
comparison tests are the VybL M test of Nyblom (1989) and the so called midpoint F-test.
F{0.5). Their findings include the observation that the F{0.5) test does pretty well against
martingale alternatives and that Nybl M is more powerful against breaks in the middle of
the sample. The latter is not surprising in light of the interpretation of the NybL M test as a
version of urgL M with J(7) equal to a particular nonuniform function that gives more weight
to breaks in the middle of the sample.

Diebold and Chen {19961 compare two approximations to the finite sample distributions of
test statisties for structural change under the null hypothesis of stability, one based on asymp-
totics and the other based on the bootstrap. The asymptotic tests are of the supremum, aver-
age. and exponential type suggested by Andrews (1993 and Andrews and Ploberger (19945,
The boutstrap distribution is in the spirit of Christiano (19920, They look at Gaussian mean
zero AR(1) processes where a break implies that the AR(1) coeflicient changes in the sample.
They conclude that caution should be exercised when using the asyinptotic test procedures
because there are significant deviations between the nominal and empirical test size. The boot-
strap. however, appears to do well even in small samples with high serial correlation. [t should
be noted that they are looking at the properties when there are dynamic regressors whereas
Andrews focuses on deterministic regressors. Their findings for the Asymptotic SupL M test is
that it tends to under reject drastically but is not as sensitive to serial correlation as are the
AsySupL R or AsySupW statistics.

Nunes, Kuan. and Newbold (1995) analyze a QMLE estimator of the break date. They
show consistency provided the data generating process is not integrated. They find that when
the series is generated by an 1{1) process with drift. analysis can spuriously lead to a break
near the middle of the sample.

Leyvbourne and Newbold (2000) look at tests of the unit root null when the true data
generating process is It with a break. They find that ADF type statisties over-reject the null
if there is a break in the early part of the sample. Thus, structural breaks can hide evidence

of a unit root as well as lead to the spurious unit root conclusions seen elsewhere. They find
12
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that this phenomena is not present for a test based on a symmetric weighted estimator. The
properties of the weighted test are much better for the mean change than for the break in
trend case where a test size near zero shows the difficulty in distinguishing between structural

change and unit roots.
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Chapter 3

Tests for Structural Change and
Nonstationarity

We establish a unifving algebraic framework for testing for long memory. Our framework
encotpasses structural change. fractional integration. and unit roots. It includes several com-
monly used tests for structural change and unit roots as special cases. [ particular. we
demonstrate that the KPSS test (Kwiatkowski, Phillips. Schmidt. and Shin. 19927 based on
a unit root alternative hy pothesis is a special case of a test Andrews and Ploberger (1994
proposed for structural change. We also introduce two new tests for long memory that have
desirable properties under certain alternatives. We show that the empirical diﬂ'n-rc:ncc-.s amoug

these tests are rather small and that the choice of one over another depends upon the partic-

ulars of the alternative under consideration.

3.1 The Nature of the Problem

Although structural changes and unit roots are both explanations for permaunent changes in
economic data, the two concepts have generally been treated completely separately. We show
that the Kwiatkowski. Phillips. Schmidt. and Shin (1992) test for a unit root is an algebraic
special case of the Andrews and Ploberger (1994 test for a structural break. The two papers.
nonetheless. do not reference one another and do not share a single common reference.

In this chapter, we provide a unifying algebraic framework for tests for structural change
and tests for nonstationarity, illustrating the fundamental similarities linking the two disparate

strands of the literature. We also show that the practical implication of these similarities
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is that the differences among the tests are minimal for a range of alternatives. including
structural change. nnit roots, and fractional integration.! Structural change and other forms
of nonstationarity are not. however, identical. and we will introduce a new test in Chapter 5
that eflectively discriminates between the two forms of long memory.

The memory or dependence of a zero mean time series z can be expressed by the prop-

. . . v '4 . . . .
erties of its partial sum 5, = ¥ The process z, is said to be short memory if 0t =

L1

limr_ . E(T~'5%) exists and is nonzero. and

oT\/2 Sty = B vre (0.1 3.1

where [rT] is the integer part of rI’. = denotes convergence in distribution. and Biri is
standard Brownian motion. Baillie (1996} shows that these conditions allow for departures
from covariance stationarity. but require the existence of absolute moments of order 4. for
some J > 2,

In Section 3.2, we propose that the most direct approach to testing for long memory is to

estimate the long-run variance. a?. that is at the heart of the definition. We propose the test

- :LQ (3.2

e
where 5?11 is the familiar kernel-based estimate of @° using the Bartlett weights. We demon-
strate that this test. properly normalized. is algebraically identical to the KPSS test for non-
stationarity. We then demonstrate that botl, tests are an algebraic special case of the Andrews
and Ploberger test for structural change at an unknown change-point.

Historically, of course. the developiment of tests has concentrated on direct comparisons of
versions of a null hy pothesis emphasizing stationarity with specific nonstationary alternatives.

Consider processes of the form
Y= et (3.3)

Kwiatkowski et al. (1992), for example. derive their form of A in the context of the case where
s¢ Is stationary and r¢ s a unit root process. While the stated null hypothesis for this test

is a stationary process, Lee and Schmidt (1996) show that the natural null and alternative

' This finding is not entirely new. Hendry and Neale {1991} point out that a structural break is very likely
to be diagnosed as a unit root if the test applied is a unit root test.
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hypotheses for the KPSS test are short memory and long memory. This conclusion follows
from their finding that the test is consistent for fractionally integrated processes [(d) with
0 < d < 1/2. Such a process is stationary. but not short memory, and demonstrating that it is
rejected with probability one in large samples clearly establishes that the null hypothesis for
the KPSS test is short memory. not stationarity.

The structural break literature arrives at the same test frum a different origin. Andrews
{1993) considers the case. in {3.3) above. where :, is stationary and u, is a structural break
process. Let LM7(x) be the statistic for the Lagrange multiplier test for the alternative
hypothesis that a structural break occurs at a known observation [x77] in a sample of size T.

If the breakpoint is unknown, Andrews (1993, proposes a statistic of the form

sup LM piz) 13.h
rell

where the set [ = [1y. | = 7] i~ bounded away from the endpoints by the choice of a trimming
parameter 7y. The trimming parameter is necessary because. as Andrews (1993} shows. when
[1 = [0. 1] the test statistic 1347 does not converge in distribution.

We propose an alternative test for structural change that avoids the need to choose 7.

QOur statistic is of the form

sup Tt ==L Mp(m). (3.5

relu 1]

where the supremun is over the entire [0.1] range. The level-a critical value for the case of a
univariate structural change is —={nta /2172, which i~ surprisingly elegant given the complexity
of the distributions in this literature.

Andrews and Ploberger {1994} introduce a weighted average of LM statistics a~ an alter-

native to the supremum. Their statistic is given by

/ LMypi=idJ(=). (3.6)

rell

where J () is sume measure defined over [I. For astructural break with an unknown breakpoint
they recommend the uniform weighting function Jir) = | on intuitive grounds. The obvious
extension to our new statistic (3.5} is the weighting functiou Jir) = (1 = 7). This leads us

to propose the statistic

-
-4

/ Tl =il Mpixjdr. (1.
r€f0.1)

16
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which equals A, given in (3.2) above.
This statistic is. in fact. a well-known test for unit roots. We show that, for a univariate

time series process, (3.7} is algebraically equal to the KPSS statistic

5 - T-zs:rrzl ‘\"12
e = s

where 5, = Z::n‘y' — ) and s?(f) is a kernel-based estimate of the long-run variance.

Showing that the KPSS test for unit roots is a particular case of the Andrews-Ploberger test
for a structural breaks has important implications. [t reinforces the point that the differences
between tests for structural breaks and tests for unit roots are more a matter of approach than
of practical conclusions. The practical ditferences between a constant weighting function over
the interval [7o. | — 79|, as suggested by Andrews (1993) and Andrews and Ploberger (19941,
and the weights J{1) = x(1 = =i over the interval [0. 1]. used in the KPSS statistic and in our
new statistic (3.5, are relatively small over the middie portion of the range between 0 and 1.
We show in Section 3.4 that the empirical properties of these tests are nearly identical across
a wide range of alternatives including structural breaks. unit roots. and fractional integration.

The results also identify an important pitfall. [t is quite misleading to conclude that a
process is a unit root if you reject using the KPSS test. but that it is a structural change if
you reject using the algebraically equivalent Andrews and Ploberger tormulation. The best
vou can say with either test is that. if you reject the null of short memory, then the process is
not short mermory.

We will urganize our discussion as follows. We first illustrate in Section 3.2 the connections
between tests of structural change and noustationarity and propose two new tests that fill in the
unuccupied niches of the Andrews and Ploberger type statisties. Section 3.3 provides critical
values and Section 3.4 provides evidence on the size and power of the tests. We summarize

our results in Section 3.5.

3.2 Tests

3.2.1 The Direct Approach

The direct approach to testing using the null of short memory and the alternative of long

memory is to estimate the long-run variance. We implement this idea by dividing a variance
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estimnate that is sensitive to the presence or absence of long memory by a variance estimate
that is less sensitive. Giiven a process y; and the demeaned residuals ¢, = (y, — yr ). we propose

the statistic

26
where s2(T) and s2({) are estimates of the long-run variance. The denominator is the familiar

Newey and West (19387} kernel-based estimate s%(f) with bandwidth ¢:

r ’ r
2o el 2, gyt .
s =T € + 27 wis, € Ceteoy.
t=1 s=| t=s+}
where
r
-1
e =y — 1 Zy.
1=l
We will use the Bartlett window w(s. ¢ = I ~s/(¢t+11. A condition for consistency and positive

definiteness is that £ & xas I' = x. but that /T = 0. Typically + ~ o, 7741 is sufficient
for this purpose. We will refer to 5241 as a restricted-bandwidth kernel-based estimator. The
numerator s?( . which we will refer to as the maximum-bandwidth kernel-based estimator.
uses the same kernel. but sets the bandwidth equal to the sample size.?

An intuitive argument illustrates why \ is a consistent test for long memory. [f y, is short
memory. then the denominator s*14i is a consistent estimate of the long run variance ¢ and.
while s2(T) is an inconsistent estimator for a4, it does conmverge in probability to a limiting
distribution. If y; is long memory. then s4(7 increases without limit as I' — ~x because it
is sensitive to the higher-order autocovariances and under long memory those autocovariances
go to zero very slowly. In fact. the sum of the absolute values of the autocorrelations of y, goes
to infinity as T — x. For s*(£). we distinguish two cases. If ¢ = 0. it either converges to the
variance of the process. if that variance is finite. or goes to infinity if it is not. For £ > 0. such
that /T — 0 as T —= x. we show that s%(£} goes to infinity. but more slowly than s¥(7) as a
result of fewer included autocovariances. Thus. the statistic ix a way to measure the relative
importance of higher urder autocovariances and hence the likelihood of long run dependence.

While the ratio s*(T1/s%(¢) of long-run variance estimates is new. this statistic is not. We

identify its place in the unit root testing literature using the following result.

? Kiefer and Vogelsang (2000) suggest the estimator s°(T) for use in HAC robust testing.
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Proposition 1. Given a process y, and residuals 0 = {yr — yr). if s°(T) is computed using a

Bartlett window. then

;
sSHny =22y &}

t=1|
wher
r
=1
. " . . t e ‘. r
Proof. We will use the summations S = Y _ e, fort = 1. Tand 57 = 3 _, ¢, for
t=1... .. T'. Because these are residuals that sum to zero over the full sample, 5, + 57 =0
fort = 1. ... T — 1. It is also the case that 5¢ = 0 and 55 = 0. Therefore.
r-i r-i r
2 . . P
Z.‘,’+Z.‘,I =2 E ~
t=1 [ t=1
It will prove convenient to study
-1 r-i r-1 r-t
Z .s'l'.» = ZQI —f‘ltr: + JZ Z il - iege,_,
t=1 t=1 szl t=edl
Similarly,
r-i r r-i r
t=1 t—=2 =l t=es ]
Adding these yields
r s r-i I
JZ\IZ:.I'Z'{:+.’ i[-" E tetr_
t=1 t=1{ =1 r-es4+1
Dividing both sides by 1% gives
r r r-t r
S = Y e S Y e
r=1 t=1 s=i (=X
which proves the result d

This result shows that the statistic A is twice the KPSS test statistic

el I 54
N b VS
# s20)

The distribution and power for various alternatives have been widely studied in the literature.
Kwiatkowski et al. (1992) show the consistency of A for a unit root. Lee and Schmidt (19961
find that X is consistent for [(d) processes where d < (0. 1/2). while Lee and Amsler (1997}
show that this also holds for I(d) for d € (1/2.1}. Andrews and Ploberger (1994} show the

consistency of a statistic similar to A (given in equation (3.6)) for a one titne structural change.

19
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3.2.2 Weighted Averages of LM Tests

A more general test based on the partial sums 5, can be written as:

e r t
r :Zl:l u""tz
s¥e)

The observation that E([t(T — t)]7'~?) = ¢ for i.i.d. y» motivates the statistic

.
avglM =T~ ‘Zt e ;i oy (3.8)

This statistic is well known in the literature on testing for structural breaks. Tou establish this

point. we use the following lemma:

Lemma 1. The LM test for the alternative yo = po + 74 + uy. where 2 15 a short memaory
process and wy s a structural broak process that equals 0 for t € (0. 21 and 3 fort € [z T)

(assuming one brreak at time 1), 15 giren by

R {qr‘
[,.‘I[“',' = Tail — T8t it

Proof. The LM version of the Andrews test requires only the full-sample GMM estimate. Using

Andrews” notation, the statistic is given in equation { L4341 on page 836 of Andrews (19930,

LMypqmy s ———m () ST ST STy (6.m) (3.9)
Tl - 7

where m p(0. 7 = IT E'r:'l m(4,. 3.0+, and where .3 and o are the full-sample estimates with
the o' being fixed parameters (i.e. the ones that do not have a structural change) and W, is
the observed data. Here. the estimator S is a kernel estimator of the spectral density matrix
at frequency zero of the sequence of random variables {m(i8,. 4. dyi c ¢ < '} 1= {70, 1 = 7y

for 0 < mg < 1.

r
]
Z I”“" i t’i (:LIU‘!
— gy

For no temporal dependence ~ is given by the following equation.

r ,
= ILZ (mtﬂ}.ff.(;) - mr) (lmH}..;.J) - mr) (3Lt
t=1

20
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With temporal dependence. S is given by the slightly more complicated form.

r-i
S = Z wiv/HT)) (3.12)
v=0
r

x —}- Z (m(”}. fd) - mr) (m(H}_,,. i&u - mr),

t=v+1
Tr-1

+ Z w(v/T))

v=l1

T

x % Z (m(”}_‘,. 3.0) — mr) (rn(”}. 3.0) - mr),

=4l
where w(1/€(T)) is a kernel with bandwidth ¢(7).
For the sitmnple case of a change in mean under the null hy pothesis of no structural break.

the variable y, is generated by the simple model
Ye = po + ¢¢ t=1. ..T 1313

['he moment conditions evaluated at iy will be
miye. ot = Flegy = Ellye — ) =0 (314

The full sample estimate of p will be

Thus the sample moment condition will be
mty v = Eidv = Ftye — =0

This yvields

dmiye gy dE(y — g

— = — = -1 (3.15)
U O
Furthermore. myp = 0 by construction and
r
LS, L {3.16]
myr = = te = =S|y J.16)
I & I

where S|y is the cumulative sum of ¢; from 1 to the integer part of =T Direct substitution

of equation (3.13) into equation (3.10) vields

o |
.\/:—,21-1)::(4):-1. (3170
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If there is no temporal dependence then ~ simplifies to

t=1
For temporally dependent ¢,. N is given by
r r r
S=T"" Z?," + 27! Z wir /€T Z €r€r_y. (3.1%
=1 v=1l t=v+1t

If wiv/€iT)) is taken to be the Bartlett kernel®, equation (3.18) becomes the s?(€) denominator
of the KPSS statistic.

Gathering (3.16). (3.17). and ¢3.1%} and substituting into equation {3.9i we have

IMp(my~ -t (319

Tl = Tisd(n)

a

We thus see that the test given in equation i3.8) is a weighted average of LM tests for a
structural break at an unknown breakpoint. This statistic. proposed by Andrews and Ploberger
(19941 and given in Section 3.1 as (3.61, uses the notation (=) for the weighting on the LM
statistics. For the case of an unknown breakpoint. they recommend a uniforin /{=) weighting
on the LM statistics. Lemima 1 shows that this corresponds to {711 — 71]~" weighting on the
SE statisties.

We can summarize the difference between the KPSS test for a unit root and the Andrews-
Ploberger test for a structural break a~ the difference between Jiz) = 11 = 71 for © between ()
and and Jix) = 1 for 7 between 1p and | = 7. This celationship has been obliquely mentioned
by Andrews et al. (1996 among others but is often overlooked in empirical applications. We
consider evidence on the difference between these tests later. but we note here two points. First,
a constant function is a fair approximation of =(1 = ) over the middle of the range between
0 and 1. Second. Andrews and Ploberger truncate the range of = to avoid the endpoints 0
and 1. Given these two observations. it would not be entirely surprising if the two tests had

similar perfurmances for various alternatives. Our later results confirm this conjecture.

3 The Newey-West estimator of the long-run variance uses a Bartlett kernel

[543
te
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3.2.3 Nonlinear Functions of LM Tests

Andrews and Ploberger (1991) also propose taking a weighted average of a monotone nonlinear

transformation of the LM statistic.

—pr2 1 c - 2 )
(14 7F /exp (5” +()L.\lr(.'r))d.](.‘). (3.20)

rell
They present results concerning the optimal choice of ¢ for a given size break. \s ¢ = 0. this
statistic approaches the avygl VM statistic given in Eq. (3.8}, and as ¢ = x. it approaches the

normalized e rpL M statistic.?

-,

1
erpl M = log/ exp (;I. JIT(:)) d= (3.20
The new corresponding variation on the ary~ statistic is

l-x,
erps = |og/ exp (%[,1[{1#)) Tl = mid=x 13,20

=%
Andrews and Ploberger note that replacing ¢/(1 + ¢y in Eq. (3.200 with a parameter r and

letting r — x produces. in the limit, the supremum of the LM statisties.

3.2.4 Supremums of LM Tests

Although Andrews (19930 only considers uniformn weights. there is nothing about supremuin-

based tests that rules out alternative weighting schemes of the form sup LM p(=) /(7). The

vell
Andrews test can be written as
LM i .23
supl M = sup ——m™M88— (3.23,
4 reﬁ Tl — 7yst(4)

where [ is an interval bounded away from the endpoints of [0. 1]. The natural counterpart to

the arygs (KPSS) and e rpsy statistics uses J{7) = =(1 - 7) to produce
~2
supS = sup ——. (3.2:40
relo 1] seqt)

This new test is the supremum analog of the KPSS test. [t puts more weight on tests for

breaks that vccur in the interior of the sample that the supl M test.

! Andrews and Ploberger use the notation expl M to denote the general formula with ¢ between 0 and .
We are using the notations avgL M and exrpl M to denote those two limiting cases.

23
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3.3 Critical Values

In this section. we present an analytic formula for critical values for supS as well as critical
values for erpS calculated by simulation. We also add the case of multiple parameter changes
(p > 1) to avgs. This generalizes the KPSS test into a test for structural change.

Andrews and Ploberger (1994) give critical values for avg LM and erpL M. while Andrews
(1993) gives critical values for supL M. KPSS give critical values for arg~S where p = 1.

Under H,. the asymptotics for all of these tests are based on
“'[,,r] — Biirm) - xB(1)

where () i~ standard Brownian motion. N, r|. then, converges to a Brownian bridge. The

distributions for the statistics are derived from
2 d .
.\['r] —*Ql(ﬂ’l.

where Q{7 is the square of a Brownian bridge. This generalizes for the case of p parameters

changing at thne 1 to
Quimi = (Bptmi = s B (1B (7 - =B,

where B0 7) is a p-dimensional vector of independent Brownian motions. Then the distribution

for 1. M -test of p parameter changes at timne =/ is given by
LMpim) A Qptmi/txil — =),

The asymptotic critical values for sup> = sup s%(T1/s%(¢) can be derived analytically.

The test statistic is distributed as

supsS — sup QpfT)
re(0 1]
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For the p = | case. we get a particularly simple approximation. Pitinan and Yor (1999)> give

P(sups?/o? < b) = Z {—=1)" expi—2n?b%)

n=-"u

We will use

PisupSi/al <br=ax1- 2e =2
P/

where a is the desired significance level. The asymptotic critical values for sup~ are given by

(approximately}

1 ,
b= -3 Inga /2y,

For the case p > 1. Kiefer 11959) provides the distribution of sup Qp( 7).
[v1]

Critical values for the new tests are provided in Tables 3.1 3.3, They are calculated
using the same procedure as Andrews (1993 and Andrews and Ploberger (1994). The values
reported in Tables 3.1 3.3 are estimates of the desired asymptotic critical values obtained by
(1) approximating the distribution of the integrals over [7. 1 — 7] in Egs. (3.7, 03,2200 and
(3.5 by averages over a fine grid of points iV and (i) simulating the resultant averages by

Monte Carlo. The grid [I1.V) is defined by
HeNY = (ol = mpluf{r =4/ N:ij=0.. N}

The value of N was chosen to be 3.600. Each realization from the asymptotic distribution of
the discretized version of (3.71. 13.221, or (3.5} was obtained by simulating a p-vector 8,0
of independent Brownian motions on [0.1] at the discrete points in [V and then computing
the discrete average of the appropriate function of (B,(7) = B, (11V(Bpo7) — =B,(131. The

nutnber of repetitions R used was 10.000.

5 {See also Borodin and Salminen (1996). Their expression (1.15.8.1) dirrctly vields
~
[’(sup_\'? /ﬂz < by = Z exp( —2(2k)%0%) - exp{ - 2(2k + 1)26°%).
k= -
The proof that these two expression are equal is a simple matter of noting that the series {n?} has the same
elements as the union of the series {(2k)7} and {(2k + 1)2}. For even moderately large b, both expeessions are
dominated by the three middle terms in

4 exp(=8b7) — exp(=267) + 1 ~ exp{—2b7) + exp(-8b7) — - --

[
o
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Although our tests do not require a trimming parameter as in Andrews and Ploberger,
prior knowledge of the general location of break may be incorporated by choosing a 7y as in
their tests. Critical values for a several truncation parameters are included for each value of p

for those researchers who are inclined to use them.

3.4 Empirical Properties

3.4.1 Break Sensitivity

The diffetences between the tests are most clearly seen by examining the impact on each
statistic of a structural change at a point = for each point in the sample, which we call
a statistic’s ~“Break Sensitivity™ function. Section 1.5 discusses these functions for various
statistics in greater detail. Figure 3.1 presents the statistic values for a pure break at points .
normalized by dividing by the sample size for the six tests of interest as well as a test we label
AHBT for ~ad hoe break test™. For this test. we apply a standard Chow test for a structural
break at the midpoint of the sample. We also consider ad hoe break tests for breaks at the
25th and THth percentages of the sample.

We can sumimarize the limited differences among these tests as follows. The arg~. e rps.
and sup~ statistics are more sensitive to breaks in the middle of the <ample than are the
corresponding avg LM, erpl M. and supl M statisties, which are more sensitive to breaks
near the endpoints. We would expect more sensitivity in the middle to be helpful in detecting
small structural changes that might only be detectable in the middle. The argl M. erpl M.
and supl M tests should. on the other hand. be better at detecting structural change near the
endpoints. This could be important if the structural breaks are fairly large because all tests
will detect a break in the middle of the sample and picking up a break near the endpoints will

be an advantage.

3.4.2 Size

Tables 3.4 and 3.5 present the sizes of the tests for various short memory processes that
fall under the null hypothesis. Specifically. we consider stationary AR(1) processes y, =

Ye—1 + ¢r. with auturegressive parameter o ranging between 0 and 1. where ¢, ~ Ni0.1). The
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tables are the rejection probabilities from 1000 replications of the DGP for each value of o.
Particular attention is paid to the more persistent values of ¢ by looking at several values
{o = 0.90.0.95.0.99) close to 1.

Overall. the tests have significant size distortions for stationary processes with strong short-
run dypamiecs. This can be counteracted fairly effectively. particularly in large samples. by
using a bandwidth correction in the estimation of the long-run variance. For the T=%00 case
with a bandwidth of £(12), only the most persistent series where 0=0.99 still have poor size
properties,

The 5 and LM tests perform comparably, with the S-tests having less size distortion than
the L M,-tests but slightly more than the [ M 5-tests. Within the N and LA testing groups.
the Arg tests have the least amount of size distortion. [t is interesting to note that the ud
hoe break test (AH BT) has the least size distortion. although it also has much lower power

against the nonstationary case of o=1.

3.4.3 Power

Tables 3.6 3.11 show rejection probabilities for alternatives of the fori
Y = ¢ =1y

where «, ~ N(0.0?) and r, is one of four foris:

Case 1: Structural Break

0 t<xl
ro=4dl. I = . =1 re0
I t>=x1
In the tables. BrkPt refers to .
Case 2: Uniformly Distributed Structural Break
0 t<=l
re =ol,. I = T~ 10.1]
I t>xl
In the tables, BrkSize refers to d/0,.
Case 3: Unit Root
FL= T + Ny Uy ~ ‘\‘10,o'i)
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In the tables. o refers to o, /0,

(‘ase 4: Fractional Integration
(t=Li%r = u,. ur ~ N(0.a})

The dominant feature of these tables is the similarity of the tests. One surprising result
is that the ad hoc break test which ignores all these enhancements does not fare as badly
as one might expect. For example, in Table 3.1. the AHBT;, test rejects a unit root with
0=0.2 about 84% of the time compared to 967 of the tiime for the KPSS/avg>S test (which is
specifically designed with the unit root alternative in mind}.

We can explain some of the small differences that do exist. Consider the KPSS/avg~
stationarity test. which uses Ji1) = (1 — 7). and the Andrews-Ploberger argl M structural
break test {7y = 0.02). which uses J{r) = 1. For both structural break alternatives and unit
root alternatives, these tests are very nearly equivalent in power. The small differences that
occur reflect the weighting. The KPSS test is marginally better at detecting small structural
breaks and small unit roots because, with more weight in the middle of the sample period. the
KPSS test is a little more likely to detect a change in the middle of the sample. Both tests
are ineffective in detecting small changes near an endpoint.

This situation reverses for large breaks or strong unit roots. A large break in the middle
of the sample is likely to be detected by either test. and the argl M test has the advantage
of putting greater weight near the endpoints. making it more effective in detecting a break in
that region. Comparing the avglL M tests for 79 = 0 02 and 7y = 0 15 (given in the tables as
al.Mj and al M. respectivelyi leads to the same conclusion. The larger truncation parameter
makes the test more effective for small breaks and unit roots where @, /0, is small and less
effective for large breaks and unit roots where o, /a, is large.

For all of these tests, increasing the bandwidth of the long-run variance estimator in the
denominator reduces the power of the test. The luss of power is not particularly bad and
becomes less severe as the sample size increases. The exception is the AHBT. As noted in
above, it suffers from significant power reduction when short-run dynamics are taken into
account in estimating the long-run variance.

Compared to the Aty tests, the Erp and Sup versions add a little power in the cases of

large structural breaks. large unit roots, and fractional integration. In particular. the Erp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



versions of the tests dominate the others in terms of power. [n the few cases in which it is not
the most powerful (e.g. very small structural breaks). its power is only slightly less than that

of the Arg-statistics.

3.5 Summary and Conclusions

If you evaluate differences in terms of testing outcomes, then there is very little practical
difference between structural change and other forms of nonstationarity such as unit roots and
fractional integration. The Andrews test for structural change (supl M) and the KPSS test
{avgS) are virtually identical in their powers fur both types of alternatives. In fact. there are
cases where the power of the Andrews test is greater than the power of the KPSS test when
the alternative is a unit root. There are also cases where the power of the KPSS test is greater
than the power of the Andrews test when the alternative i~ a structural break.

We decornpose what small differences there are into two test attributes. We show that these
texts differ because the KPSS test uses S-weighting, which weights the squared partials sums
SE equally, while the Andrews test uses L M-weighting, which keeps the significance level for
each LM test at a. They also differ because the KPSS test uses an average and the Andrews
test uses a suprernum.  Following Andrews and Ploberger. we add an exponential-average
transformation that is intermediate between the average and the supremum.

There is virtually no difference between [ M -weighting. and ~S-weighting.  Equivalently.
there is virtually no difference between the KPSS test and the Andrews-Ploberger argl M test.
There i~ also very little practical ditference between the Andrews supl M test for structural
breaks and the test we propose based on the sup~. The differences among the average.
exponential-average, and supremuimn tests are a little bigger. but still very small.

It is a bit misleading. therefore. to identify the Andrews-Ploberger avgl M test as a test for
structural breaks and to identify the KPSS test as a test for nonstationarity or, in particular.
unit roots and fractional integration. There are certainly no grounds for using any of these

tests to distinguish between. for example. structural change and fractional integration.
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Table 3.1: AvrgS Critical Values

p=1 p=12 p=21 p =4 =5
L0 104 27 7 10% 3 TA T0A 2% UA 10% > A I0A A 1A
0.49 0.69 0.96 1.65 1.16 1.49 2.38 1.58 1.96 2.85 1.98 2.41 3.37 2.30 2.75 3.90
.48 0.63 0.95 1.61 .14 147 2.30 1.55 1.93 .80 1.94 2.37 3.31 2.26 2.7 31.76
047 067 0.94 1.58 1.13 1.47 2.29 1.54 1.90 .76 1.93 2.36 3.27 2.25 2.68 1.73
0.45 0.67 0.93 1.54 112 1.44 .22 1.52 1.86 .68 1.90 2.32 3.24 2.21 2.63 3.63
0.40 0.64 0.83 1.45 .07 1.38 2.09 1.46 .77 2.31 1.84 2.23 3.11 2.12 2.54 3.42
0.35 0.60 0.82 1.35 1.01 1.31 1.92 1.39 1.69 .39 1.76 2.12 296 204 2.44 3.2
0.30 0.56 0.78 1.27 0 96 1.24 1.81 1.31 .59 .23 168 2.01 2,75 196 2.30 1.05
0.25 0.52 0.73 1.20 0.91 [.135 1.67 .23 1.51 209 159 1.89 2.56 1.86 218 2.86
0.20 0.49 0.67 1.10 0.45 1o’ 1.56 1.16 1.41 194 1.50 .77 2.39 1.75 2.04 2.6
0.15 0.45 0.61 1.00 0.79 0.99 1.44 1.09 1.31 .79 1.40 1.64 2.20 1.64 1.90 2.47
0.190 0.42 0.57 0.91 0.73 091 L 1.01 1.20 1.65 1.29 1.52 2.02 .53 1.75 .27
0.05 0.38 0.51 0.82 0.67 0.34 1.19 0.92 [.10 1.5 118 .39 1.43 .40 .61 .08
0.02 0.36 0. 4% 0.77 0.63 0.79 112 087 1.03 L.42 112 1.3 .73 1.33 1.52 1.96
Q.00 035 047 0.74 061 0.76 1.0 084 099 13T 10X 126 1.66 1.28 1.46 188
-7 p==8 9 =10
T 107 1% 10% 1% 10% % % T10% .‘7. 1% 0% % 17
049 .68 Ll ; 4.20 104 l )2 4.70 118 3.90 3.0n 168 4.24 5.36 4.06 461 ER. R )
048 2,63 L4 413 299 350 4.59 .15 3R6 fun 166 419 5.8 1.01 156 .74
047 2.62 3.10 4.08 2.97 3.46 4.33 3.31 1.82 4.94 1.6 .17 5.22 397 451 .64
0.45 2.58 105 398 293 3140 4.49 3.27 TR 4Ry 158 410 SN 19 4.6 3.59
0.40 2.49 2.9% 3.78 PR P $.25 4.20 116 3.64 158 3.47 3.a92 1.9% .79 1.28 5.25
035 2.40 280 161 2.70 1.09 3.98 1.03 349 437 3.4 17T 4Ty 165 411 508
0.30 229 263 LI 2oM 2.95 3TN 2.9 3132 411 1Y 161 1.45 151 191 1.80
0.25 218 252 11T 140 2.80 155 277 115 189 5.0 341 4.20 [ 3 .70 149
0.20 2.06 236 296 2.3 263 330 263 2.96 163 2.M6 320 304 [ 351 $.19
0.15 t.93 220 1TH 2R 2.45 3.06 2.46 $.TT 136 268 3.00 167 2.9 328 389
0.10 .79 203 253 o2 227 2RI 2,28 2.56 12 200 2T 137 274 104 3.9
0.05 1.64 186 2.32 1.86 208 236 209 233 I F IR ] 2.9 310 2% 2TR {4}
0.02 1.56 .76 218 1.76 197 241 198 2.22 I 21T 242 292 P R U | 30
0.00 1.50 1.69 210 1.69 LN 232 L9 2018 259 209 288 2M) 2000 258 297
p = Il p =12 p =13 p - 14 p =15
T 10% e 4 10 B4 1% 10% B4 4 mrr % 1% 107 A
049 1.34 494 625 4.64 323 6.59 .03 .66 696 2t 9  T3T 363 631
0.48 4.29 487 613 1.959 .16 650 496 3.59 [ ) > .’ll > R4 P .00 n 24
V4T 42T 434 610 456 312 6.44 491 335 6Ad4 » 81 TAY 3150 bR
047 420 476 399 450 305 633 4.85 .47 666 310 3T ToT 545 609
D40 40T 462 5T 4R 492 6.04 473 130 616 4.9 5 676 5. 82 5.89
0.35 193 442 546 22 472 57T 499 309 607 47T 33T 6.4 10 5.69
.30 1T 4.2 .06 4.05 451 .51 4.40 4.838 .70 $£.59 313 616 194 341
0.25 360 400 489 LNT 42T 5.2 420 462 45 438 486 386 4.7 516
0.20 3.41 3179 456 16T 404 48T 39T 4.33 15 416 460 549 447 4NT
0.15 3.20 154 4.2 344 179 4956 .73 408 479 191 432 512 4.20 457
0,10 297 328 3.90 320 351 419 347 3.79 444 365 402 470 392 126
.05 2.74 1.02 3.58 2.95 3.22 1.83 3.20 3.47 4013 3137 3169 4.31 36t 3191
0.02 259 286 138 279 3.05 1.62 1.0 1.28 382 319 349 107 542 1.70
0.00 2.49 2.7 3.25 2 293 1.48 2.91 3.16 16 1.06 1 1.91 3.29 1956
= 16 =17 p = IR p =19 p = 20

10% L?.‘7. % 10% % 1% 10% 5% 1% 0% % 1%
6.26 698 X3l 653 .29 Ko 68T T39 916 18 98 94T
6.21 689 RX14 646 T23 R69 680 T51 901 TH0  TO0 937
618 683 A0Y 643 TIAT R0 676 T49 RO T.OT TRI 9
608 673 TY96 635 TO05 84T 663 T3 XT3 Tol TTo 921l

p =
x, 10% 5%
0.49 5.96 6.59
0.48 3.88 6.50
0.47 5.84 6.45
0.45 3.76 6.39

0.40 .61 6.17 3.92 6.54 T.68 6.15 686 X2 648 T2 S.43 6.79 T.45 R.7Y
0.35 5.42 5.91 374 65.28 T.35 3.97 6.56 B 6.19 6.84 R.06 6.57 T2 343
0.30 5.2 5.67 5.33 6.02 T.02 375 6.27 T43 6013 6.59 6.32 6.90 804
0.2° 4.97 5.42 6.30 5.2 374 6.63 5.48 3.97 T.06 3T 6.27 13 6.05 657 T U4
0.20 4.72 .12 3.92 5.01 543 6.30 5.20 1.66 6.64 5.46 393 K87 5.72 6.20 T.20
0.15 4.44 4.80 351 1.71 3.10 5.89 4.90 3.30 6.8 .13 336 H.40 5.39 5.81 673
0.10 4.13 447 5.09 4.38 4.75 3.45 1.56 4.92 373 1.79 3.16 3.93 3.01 5.39 6.24
0.05 I n8l 4.11 1.68 4.04 +.37 5.00 4.20 453 5.27 1.42 4.76 J.44 4.62 197 .74
0.02 161 3.89 1.43 3.82 4.13 1.7 3.98 428 498 4.18 $.30 3.14 4.33 4.70 344
0.00 3.47 3.74 4.25 1.68 3.97 4.55 1.83 4.12 479  4.02 4.13 4.94 4.21 4.52 5.23
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Table 3.2: ErpS Critical Values

p=1 p=12 p=13 p=4 p=>5

Lo 0% l% % 0% 3% % T0% S T% T0% ')7« % lZF% )% ™%
0.49 1.79 2.35 1.69 2.7 3.40 3.18 3.59 4.3 6.12 4.36 5.23 T.15 3.02 3. 3.20
0.48 1.79 2.35 1.69 2.74 31.43 5.15 3.58 4.32 6.17 4.36 5.24 TAT 5.02 3. .16
0.47 1.81 2.35 3.65 2.76 3.43 5.12 161 4.35 6.18 4.40 5.29 T9 5.04 3.9 LIRS
0.45 1.82 2.36 3.66 2.77 3.48 5.14 1.64 4.36 6.24 4.45 5.32 T.24 5.07 814
0.40 1.43 2.37 3.65 2.82 3.52 521 3.67 4.44 6.22 4533 5.40 T35 .19 R.08
0.335 1.82 2.38 3175 2.83 3.53 5.16 3.7 4.47 6.27 4.57 .43 TAT 5.27 215
0.30 1.30 2.36 3.70 2.3 3.54 347 .71 4.44 6.1 4.59 5.44 T.56 5.15 AT
0.25 .78 2.33 .77 2.R3 31.54 5.11 372 4.46 6.20 1.62 349 T.45 5.42 %19
0.20 1.7% 2.29 3.70 2.81 1.53 5.15 3.72 1.44 6.28 4.65 3.50 T4 5.45 R.23
.15 1.72 2.24 3163 2.7R 3.43 5.04 3.70 4.44 6.2 4.66 5.48 T 5.46 R.13
0.10 1.68 2.20 3.57 274 3.43 5.04 31.65 1.40 6.20 4.63 543 T 544 LN E }
0.05 1.60 242 3.50 2.69 3.39 1.99 1.60 4.35 6.12 457 5.42 T.28 .41 ROT
0.02 1.55 2.08 3.44 2.64 1.35 4.96 3.55 4.31 6.05 4.54 .40 T.25 3.7 R.OL
0.00 1.52 2.04 3.40 2.60 3.31 4.92 3.52 4.27 602 4.51 .37 T.21 .33 TaT

p=6 p=" p =R p=9

T, IOA %A 1A 10% % tA 10% 57 1 10% B4 1% 107 17
049 3.TR 6.76 L2 | 648 T4 9.7 T.20 K23 10 58 T R0 R.RQ 1.2 R52 1203
0,48 3580 679 RA| 650 T53 978 T2 R INDGR T RY R O T L2
.47 3 A2 6Al N4 6.57 T.56 RR.E) T2 4.35 l0.61 T2 9.04 L.l R59 1214
0.45 5.9 6.85 RAT 6.62 Te2 9.86 T3 R.45 10.70 RO1 9.11 11.23 =75 984 12.22
.40 601 6.98 R97 6.72 TT1 9.79 T.49 R.57T 10 65 816 G109 11.46 973 10.01 1251
0.35 6.07 TO5 .99 6.81 T RIRT) T61 R.T0 10,74 27 928 11.69  9.04 [N 12.47
0.0 642 T2 R 689 TTA 998 AR JOAD RI6 94T 1169 911 009 (24
025 617 TOR 900 6.491 TH6 02 RNT 1093 %41 945 LTI 9 IR 029 1258
020 621 T 902 6.96 TO2 .06 RX4  JONT 445 944 1T 925 034 126
015 6.2 T 10 201 6,99 T.93 9.99 RN 1R2 51 939 168 32 to 34 1298
010 622 T2 9.01 697 To4 9.9 R.%4 1076 %52 462 et 934 .39 1256
005 620 To9 $97 6.96 T 984 : XA 10T 852 96) LR 932 1036 1250
0.02 617 T.O0n 894 6.95 TRS 9.79 T N6 LR 10.65 = 49 956 il 60 930 .33 1252
0DoU 614 T2 X N) 693 TRl 976 TRy L33 1063 R .46 955 11.60 92T 10,31 12,50

p =1l p =12 p = 14 [

T, 104 B4 R4 0% B4 1% 4 0% 57 V% 107% YA 1%
049 909 .30 1287 968 1086 1357 1432 1092 12.2¢ 1517 1167 1303 1591
048 914 it 33 12.92 9.77 1090 1362 1446 |1.0L 1228 1520 1171 @314 13491
(3 Y B 1) 0.4t 2.95 985 o9 1377 1452 1Lo 1242 1521 1t7Ts 1320 1597
0.45 928 10.51 13.05 9.9 Lo 13174 1447 11T 1260 1537 1193 1331 61l
.40 9.49 10.70 1347 1010 1137 1K) 1474 11 46 128 1541 1229 1362 1622
.35 9.65 t.R1 1155 10.31 11.57 1401 14848 163 1301 15609 1250 1379 |6.48

1584 1264 1390 1657
. 15.88 27T 1399 (o]
X600 12RT 1409 16T

thor 1178
1ho8 1193

030 977 1090 1357 1048 11,72 1425
G325 986 9’ 1351 1060 11.78 (434

020 993 1162 1357 1070 1184 1433 1512 l2os 13 3
013 10,00 1105 14856 1077 11.89  [4.29 1318 1213 1334 1604 1293 (416 1674
010 1006 1110 1356 JOR2 1194 1419 1584 1221 13319 16.0] 299 1419 IR T2
0.05 1007 1109 3152 1082 1191 (4.1} 15,32 1224 1340 1595 1302 1422 16 T4
002 1009 1107 1349 10438 [1.90 (408 1534 12,24 134} 1398 1301 1423 1670
0.00 1006 11.04 1348 (1081 1189 14.05 1530 1224 1338 1597 1299 (422 1669
p = 16 p =17
%, 0% % 1% 0% 5% 1% R4 1%
049 1232 1360 16,10 1294 14.36 17.90 IR.TR 19.42
043 1238 1366 16.25 13.06 14.46 3. 18.07 I8.76 19,513
047 1247 1378 1631 1315 1450 1712 1368 1516 I8! 18.71 19.67
045 1259 1394 1652 1331 1461 17.26 1387 1529 813 I8.79 19.69
040 1290 14.18% 1672 1156 1489 1747 1412 1549 865 19.16 19.83
0.35 1312 1439 1692 1176 1509 1782 1439 1576 I8.68 19.21 20019
030 1328 1452 1716 1197 1535 1798 1453 1599 I8R5 19.31 0.5
0.25 1340 1473 1739 1417 1553 1816 1470 1606 18499 19.57 20.44
0.20 13483 1478 1742 1429 1564 1828 1484 1620 19.03 19.82 20.50
0.15 1355 14.80 1743 1438 1572 (83! 1494 1627 1909 19.85 20.64
010 1360 1436 1738 1441 1577 1432 1506 1637 19.02 . 19.30 20.63
0.05 1168 1491 1734 1445 1580 [8.42 1512 1641 1897 15485 1713 1980 0.75
0.02 1370 1492 1734 1449 1580 1836 15.13 1646 19.05 1588 1715 1980 20.72
0.00 1369 1490 17.30 14.48 1577 1831 1513 1644 1906 1589 17.17 (980 20.72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.3: Sups Critical Values

p=2 p=1 p=1 p=>5
Lo 10% 10°A E Y 107 A 1% 10% kY 17 0% 5 A
0. 49 0.85 1.36 1. & 2.67 1.33 2.24 319 .24 2.72 171 2.58 3.07 4.21
0.43 0.93 1.47 1.8 2.80 1.94 2.35 3.34 2.38 1.83 3.86 2.70 1.238 4.36
047 1.00 1.54 L. 96 2.87 2.01 242 3.50 2.47 2.94 3.98 2.81 334 4.44
0.45 1.09 1.66 2.07 2.99 2.14 2.56 3.64 2.61 3.08 4.15 2.9% 1.49 457
0.40 1.2 1.84 2.25 .24 2.34 .79 3.81 2R3 3.32 4.53 1.2 1.74 4.77
0.35 1.35 1.96 2.36 1.32 2.45 2.89 389 2.94 3.42 4.61 3.34 187 1.91
0.30 1.42 2.03 2.44 3.37 2.33 2.95 3.93 3.0t 3.50 4.64 3.41 194 4.9%
0.25 1.45 2.07 2.48 3.40 2.56 299 1.97 3.05 3.33 4.66 1.45 1.93 4.96
0.20 1.48 2.08 2.50 3.40 .58 3ol 1.98 3.05 31.54 4.66 147 3.97 .00
Q.15 .49 - . 2.09 2.50 140 259 3.0l 3.94 1.05 31.54 4.66 347 397 3.00
9.10 1.49 1.81 2.65 2.09 2.50 3.40 2.59 j.ol 3.98 3.05 3.54 4.66 147 397 .00
0.05 1.49 1.81 2.65 2.09 2.30 3.40 2.59 301 3.98 3.05 154 1.66 3.47 197 .00
0.02 1.49 1.81 2.65 209 2.50 1.40 2.59 301 3.9% 1.05 3.54 4.66 347 .97 5.00
0.00 1.49 1.81 2.67 2.09 2.50 1.40 2.39 .ol 398 1.05 3.54 466 147 19 .00
p==56 p =7 p== p =10
T, 107% 7 1% 10% A [k 104 A 1% 10% 10% B 1%
0.49 98 149 199 1.3 3AT 3.10 3174 4.8 3.50 4.06 442 308 6.26
0.48 313 166 173 3.50 1.04 .23 .89 1.46 .63 4.24 4.39 322 6.46
0.47 3.24 1.76 4.78 162 1.16 .33 4.01 457 5.80 4.35 4.72 333 699
.45 141 .91 3.01 1.76 4.33 3.50 4.1% 4.77 5.97 454 4.94 3.50 6.7
0.40 163 416 5.26 4.04 4.55 .68 4.44 5.02 616 479 5.36 522 381 TO5
035 1.76 4.29 5.34 417 4.64 .81 4.58 314 6.2 4.9 547 3.3 392 T
o 182 4. 34 319 4.2 473 386 465 323 627 5.00 3.52 540 5.97 TN
.25 385 4.6 .19 4.27 4.77 3.86 1.67 0.26 .32 .03 558 542 399 TN
020 1.46 1.37 319 428 4.77 387 4.69 5.26 632 3.0 3.04 342 6.00 i
01 386 437 339 428 478 SRTAAY 526 6.32 5.03 354 342 b0 TR
) $. A6 437 5.19 4.28 4.78 5.47 4.69 3.26 6 32 5.04% 254 5.42 600 TN
0.05 1.R6 417 3 4.8 +.7% 387 469 326 612 04 304 A2 s 0 T
0.072 LY 437 5.9 4.28 478 987 4.69 5.26 6. 312 » 01 304 : R P 600 TN
0.00 186 437 5.9 4.2% 478 98T 4.H9 526 612 S04 5 o4 6.7 042 600 TN
p = L p =2 p =15
T 1074 "7- 1% 0% B4 1% 10% 1% 1% 107 B 1%
U 44 +.71 3.32 6.70 » 14 G T4 41 T4 T8N 6.0% 6.7 %24
044 489 .32 H.Rb .22 5.8 T26 339 TeT %05 62t h96 %40
0.47 301 3.66 Tul 337 .96 T 5.7 T R.16 6. 19 B N b
0.3 320 o RE T2 3.571 618 TH0 292 T LI bbl T I |
0.40 549 613 T 5.81 650 RO K29 n 2T .64 6.95 Ted RYIX
033 565 625 TeT 598 664 TOT o4l LN .74 T TR0 92
0.3 T2 6. 30 TH9 605 670 RO00 649 L 1} NTH TaT T b at
V.23 274 6. 31 TTy 6.0M 6.7l R.00 6.51 R 46 TR T AT 9t
0.20 3.75 6.31 TTU 6.0% 6.71 <00 651 R. 46 BTN T.20 TAT 921
G.15 3. 6,31 TTo h.OA 6.71 %00 6.51 By 84.46 .78 T.20 TNT 921
6.10 5 6.3 T.70 6.08 s 800 651 T R .46 TR T.20 TAT 92t
005 .75 631 TTo 6,08 1 300 651 T 6 R 46 R.TR T.20 TRT G921
0.02 3.75 6.31 T.To 6.08 Tl R.00 651 Tu6 X.46 AT T.20 TAT 9.21
.00 3.75 6.31 T.Tu 6.08 B 5.00 651 T.16 n.46 RN T2 T8T 9.21
p = I8 p =2V
1% 10% % 1% 1% 10% % R4
RR2Z 697 T 9.29 T3 ROR 9.69 THE  R44 oy
9.02 T.20 T9T 957 751 X.30 9.89 T.R9 71 10.28
914 T35 9.7¢ TH9 %50 (0.0} RUO6 A9 10.47
9.41 T80 993 T2 371 1018 R.29 910 .72
9.77 T2 10.20 R.25 9.013 10.49 R62 942 1U.%89
9.85 R.08 10.27 842 917 10.63 879 9.57 LLu>
R3 RX. by LEE] 10.13 2458 9.23 10.65 R84 9.60 1111
T.RS 98T R.16 R.84 10.34 8.50 325 10.68 N.R6 962 ti
T.R6 9.87 N6 R84 10.34 850  9.25 10.68 R86 962 [T
T.RG 987 R.16 N84 10.34 8,30 925 10.638 386 9.6 1Lt
T.R6 987 N 16 R.N4 10.34 8.50 w425 10.68 R.N6 9462 1.1l
.R6 9.87 R.16 R.84 10.34 350 9.25 10.68 N6 962 [lal
T.86 9RT 3.16 R.84 10.34 %50 9.25 10.68 L1 962 Lt
T.86 957 R 16 R84 10.34 R.50 9.25 10.68 886 962 1
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Table 3.4: Size and Power: AR(1) Models. T=200

Bandwidth = ({0}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<] a\‘gS rxpS sups aL.\l: PL.\') SL.\‘Q &L.\lls !‘L.\l[s SL.\||5 ahzs 3h50 ah:s
0.00 0.056 0.056 0.645 0.055 0.055 0.044 0.054 0.055 0.042 0.051 0.056 0.054
0.10 { 0.0T3 0082 0078 0.075 0.085 0.072 0.074 0.0383 0.076 0.067 0064  0.084
050 | 0.335 0.497 0432 0.377 0.512 0.489 0.332 0.442 0447 0.257  0.262 0247
080 [ 0.819 0941 0.909 0.865 0.942 0.923 .79 0.8398 0.908 0. 494 0.542  0.496
085 | 0900 0972 0958 0.938 0.974 0.970 0.8836 0.948 0.954 0.555 0.551 0.596
0.9 | 0973 0.993 0.985 0.984 0.993 0.990 0.968 0.983 08T 0.653 0.660 0.655
0.95 0.992 0.998 0.997 0.996 0998 0.997 0.9%9 0.997 0.997 0.715 0783 0.7
0.99 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.807 0874 X35
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 D.888 0905 O0.893

Bandwidth = ¢(4)

= avgS  expS  supS f al.Ms  eLMy  sLMa | aLM;s  fLM;s  <LM;5 | ahgs ahgy ahss
0.00 0.035 0.037 0.026 0 U35 0.035 0.026 V.03 0.036 0.024¢ 0.050 0.041 0.032
0.10 0.045 0043 0.035 0.047 0.041 0.028 0.051 0.039 0.033 0.051 0.045 0.0l
0.50 1).0OR3 0.0853 0.072 0078 0.082 0.0-43 0.0R¢ 0.086 0.058 0.0%2 U UX¢ 0.0x4
0.80 [ 0217 0280 0222 0.225 0.265 0.169 0.231 0277 0.219 0.171 019 0213
0.85 | 0.312 0.391 0.314 0317 0.371 0.264 0.31%8 0.385 0 336 0229 0241 0254
0.9 0437 0.528 0.443 U450 0523 .38 04350 0518 [V IR 135 ] 0.307 0.336 0.30Y
0.9 U.6-4i 0.738 0.646 0 665 0.7 0621 0.6.49 0.724 0682 ).380 0.492 0. 456
0.9 0.863 0.905 0842 U.XR9 0915 0.840 0).865 0.89] () 8t 0.568 0675 [NV 4
.00 0932 0.953 0913 0.940 0.954 0 909 0.928 0.9145 0921 072 0.794 073

Bandwidth = ((12)

© avgS  expS  supS | alMa  eLMz  SLMg | al Mg eLNs SLM g ahas ahsy ahsy
J 0 U.0.36 0.019 0014 0.030 O0IR 0.023 0039 0020 0015 ) 030 J.039 0.051
0.1 0.033 1).026 0017 003l 0.022 0.021 0.035 g2 0.012 0.050 0046 0042
.50 U.U533 0.036 0.03% 0049 0.032 0010 0.05°% nul~ 0017 005 3.062 0 OnY
4.80) [PV 0.072 0.043 0.070 0.051 0.009 0085 0075 0.022 0.0n2 .08 0107
(L. 0124 0.00% 0.047 0.102 VU3 0012 0.1 0114 0032 O.1le o1t} 0O 12=
O.*%) (L B 0153 .08 126 0.123 0017 0,155 0.165 0052 01118 0135 150
09% 0.295 0.297 0.202 0.257 ).2n1 0057 0.30x 0314 0152 0.19%) 0.274 0.220
09" 0).54% [0 3. " O.442 0543 0563 0.268 1).558 0 587 0 103 0.3.36 0481 0410
1.00 U 72X 0 THO 0632 0.7 0.757 0.462 0.72 ).769 0 64N 0540 0 .H4R 0548
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Table 3.5: Size and Power: AR(1) Models. T=300

Bandwidth = ({0)

o avgS  expS  supS | alLMs  eLM;  sLMa | aLM;s  eLM;s  <LM;s ahss ahso ahzs
0.00 0.052 0.054 0.049 0.055 0.054 0.051 0.054 0.056 0.051 0.051 0.051 0.057
0.10 | 0.088 0076 0079 0.063 0071 0072 0.066 0.071 0.075 0.061 0.070 0.7
0.50 | 0.354 0.563 0.5330 0.411 0372 0.642 0.351 0479 0.533 0.25%8 0.255 0.278
080 | 08364 0YT6 0960 0.939 0.982 0.936 0.8309 0.934 0.955 0.529 05248  0.511
0.85 0938 0995 0979 0971 0.995 0.995 0.908 0.970 0.980 0).582 0.580 0.568
0.90 0.985 1.000 0.999 0.994 1.000 1.000 0.9%6 0.993 0.995 0.661 U631 0.656-¢
Q.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.767 0.765 U.7R2
0.99 1 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.881 0.894 0.894
1.00 1.000 1.000 1.000 1.000 1.006 1.000 1.000 1.000 1.000 0.937 0.952 0.938

Bandwidth = ()

[~ a\'gS Pxps 'iups al,.\lz ’L.\ly \L.\l'z aL.\hs "..\115 \l,.\hs ah;\_r, ahsu -‘lh,'_v,
0.00 0.053 0.055 0.050 0.057 0.055 0.045 0.057 0.052 0.041 0.0-49 0.039 0.035
0.10 0.051 0.051 0.052 0.047 0.049 0.038 0.059 0.050 0.042 0.056 0.U56 0.0-49
0.50 0.082 0.093 0.0R2 0.08¢; 0.6099 0.08-¢ 0.082 0.090 0.085 0.109 0.069 0.0R2
(VR0 0.1%4 0.252 0.205 0.198 0.250 0.223 0.189 0.228 0.225 0.153 0. 147 0.1 46
0.85 0.266 0.375 0.333 U.285 0.3180 0.345 0.263 0.33% 0.342 0.210 0.219 0.202
0.90 0.371 0514 0.432 0. {08 0.528 U491 0.370 U.465 0454 0.270 0.263 0.273
0.95 0.628 0.793 0.722 0.695 0.799 0.732 unld 0.740 0 728 U.381 0.411 0430
.99 0.959 0.989 0971 0974 0992 0975 0.950 a9TT 0977 0 hi2 0. TOR ).702
100 0.949¢ 0.9 0997 (T3 13 0.9 0997 0.993 097 3 949 0 R39 ) 864 U K15

Bandwidth = ¢(12)

o avgs exXpS supS | al.Mz el M2 SEMa U allMis  #LMs  SLMy, ahasy ahsy ahrg
.00 0.039 .041 00733 0 040 0037 0.032 0.043 0.031 3035 0.011 0.055 O.043
010 0.057 10.052 0043 0.057 0048 0.045 055 0050 J.040 .05 0 06} 0.0n3
0.5 0.049 0.051 [SRVE R 0.050 U046 0.0-45 0.052 0048 0.0.3-4 0045 0.057 0033
0 XU ) OX1 ). .085 0068 0.073 .06 0.043 0.080 0.ONR3 0 059 onTs 0066 0.07T0
.85 0. 101 0. 1Ux 0.102 O.0uT 0. 101 0065 0.10-4 0 2 0.080 0.OR5 0.10% O.O08¢
0.90 JREE] 0172 0120 U1t 0.1nl 0.106 0144 U. 166 U133 0123 U143 013
095 .26 0318 6.270 0.265 G312 0.236 0.6l 0. 306 0.265 O 19 .22 0.220
(VRS 3] 0727 0 806 0.722 0754 1).803 0.701 0.7139 0.R00 0716 U 6] 0.527 1).505
1.00 3,939 097 % 0931 N 0958 0974 ).936 0939 (IS ' 947 0.726 0.780) 0.729

R A
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Table 3.6: Power:

Uniformly Distributed Structural Break

=200. Bandwidth=£(0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BrkSize | avgS exp$S sup$S al M, eLM; LM, T alM s eLM;q  sLM, ah ;o ahy, ah-q
0.1 0.069 0.062 0.06-4 0.0638 0.059 0.043 0.070 0.066 0.049 | 0.062 0.071 0.071
0.2 0.150 0.146 0.133 0.147 0.143 0.100 0.154 0.146 o.116 . O.115 0.140 0.097
Q.5 0.562 0613 0.571 0.575 0.607 0.335 0.572 0.606 0.5773 l 0.402 0.454 0.362
1.0 0.836 0.889 0.830 0.365 0.909 0910 0.327 0.348 0.845 | 0.660 0.T28 0.675
20 0914 0.962 0919 0.940 0.969 0972 0.905 0.920 0919 ., 0.814 0.855 0812
5.0 0.971 0.996 0972 0.980 0.990 0.993 0.965 0.972 0.970 |, 0910 0.937 0.394

Unit Root

- avgS expS supS | aLM,; LM, SLM,; T alM;s eLM,q " sLM;. 7 ah,s ah., ah-«
0.01 0.099  0.100 0.093 | 0.093 0.094 0.062 0.102 0.099 0.073 0.091 0.074
0.02 0.259 0.265 0.238 * 0.254 0.249 0.194 0.261 0.259 D 0.171 0.222 0178
.05 Q.607 0.634 0617 ‘; 0619 0.630 0.572 0616 0.628 0.598 0.4%14 9.520 0 461

0.10 0.848 0878 0.853 | 0.865 0.882 0.857 0.8343 0.862 0.361 0.684 0.705

0.20 0.961 0974 0.960 ; 0.963 0978 0973 0.957 0.968 0.965  0.793 0.835

0.50 0.996 0.997 0.996 | 0.997 0.998 0.993 0.994 0.995 0.9 0.852 0 R8TT

Fractional Integration
d avgS expS supS  aLM, LM, sL.M; al.M;, .M« sLM;. ah ;s ahd, ah-q
.25 0.579 U.687 0651 ' 0612 0.705 0.668 U.587 0.647 0.634 0.9 0.416 [},
0.50 0.939 0983 0.967 ‘» 0.961 0.9%83 09581 0.935 0.965 0.964 0.703 0 T2 0.657
5 0.995 0.993 0.997 0.997 0.999 0.999 0.992 v.vaT 0997 ORI 0.R54 0.830
1.00 1.000 1.000 1.000 { 1.000 1.000 1.000 0.99x 1.000 1.000 0.R9% 0.907 0881
Structural Break
BrkPt avgs expS supS al.M; el. M, sLL.M al. M. M. sLM o ah ;y ahs, ah-y
0.1 0.169 1.243 0.125 0.223 0.279 0.252 D161 [} 20 s V. 166 0.203 J.09R8 .05
0.2 0.320 Q617 97301 0.363 4.609 [LIEY Y 352 0.624 09591 10.700 000 (LI 4.}
0.3 0.746 (1 gt | 0.746 0n.739 075 U662 9 a9.777T 0.716 0.799 0541 0,208
0.4 0442 U.842 0 .836 O.N21 ORL6 0.729 0.819 0837 0.795 646 0.782 0.37TT
0.5 VAT URER  ORG9 ' OR4T 0NN 0753 0.867 0. 864 O ROR 04T 0944 00
0.6 0.854 ).860 O.864 ' 0.842 0837 0.763 0.862 0.862 0827 0,373 0824 G670
0.7 0.725 0.758 0.727 , 0.727 0.737 0.663 0.74t 0.762 0.721 0.217 0 540 .79
[IR.} 0.329 1.594 ). 480 0.360 0587 Y] 0.5413 0611 1).786 0.126 .24 0.659
09 .81 0.267 0.140  0.240 0327 0.299 0173 0.201 0198 ).066 D098 .29
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Table 3.7: Power:

=200. Bandwidth=£({4)

Uniformly Distributed Structural Break

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[ BrkSize aveS expS supS 1 aLM, eLM, LM, TalMii LM,y SLM,, ah ;s ah., ah-«
0.1 0.064 0.058 0.054 | 0.062 0.055 0.032 0.064 0.036 0.042  0.056 Q.064 0.060
0.2 0.118 0.1238 0098 | 0.123 0.113 0.074 0.123 0.122 00938 | 0.115 0.109 0.103
0.5 0.534 0.563 0.521 | 0.541 0.541 0.444 0.540 0.559 Q0.507 0.336 0.439 0.349
t.0 0.795 0.872 0.788 | 0.840 0.882 0.491 0.781 0.825 0.331 0.587 0.644 0571
2.0 0.8297 0.953 0.880 0.925 0.965 0.970 0.RTR 0.493 0.903 0.716 0.778 0.712
5.0 0.933 0.994 0.914 0.973 0.989 0.939 0.917 0.933 0931 . 0.742 ) N22 0.75%

Unit Root
- avgS expS supS alLM,; eLM, LM, JaLM,y LMy sLM,s  ah. ah.., ah -
0.01 0.077 0.073 0.054 0071 0.064 0.049 2.082 0.075 0.033 | V.064 DETLT) 9078
0.02 0.2318 0.239 0.212 ‘ 1).242 0.225 0.159 0.245 0.242 0.193  0.154 6.212 0.164
0.05 0.368  0.590 0538 ' 0577 0.592 0.503 0.566 0.580 0.5531 0.405 . 420 0412
0.10 0.771 0.808 0.768 0.7R7 0.805 0.753 0.774 0.799 0.782 0577 0.656 0.6503
0.20 0.386 0.919 OARTT | 0.906 0.924 0.890 0.836 N9l 0.900 0719 0.734 0.680
0.50 0.945 09773 0.929 ' 0.95¢ 0973 0.940 0.947 0.966 0.949 0.723 0.777 0.725
Fractional Integration
d avgS expS sup$S al.M, eLM;  sLM, [ al My el My sLM,, ah s ahs, -
0.25 0.302 0.3573 0. !O‘)fl). 3108 0.348 0.271 0.313 DIEXE] 0.313 0242 0.267 G218
0.50 0.652 0.737 0.650 | 0.696 0.740 0.633 0.666 V.76 ).675 U. 444 .51 DR L)
0.7 1).R48 0.907 0.845 | 0871 0.908 0.854 0.845 0.89% 0.863 0.608 0.666 U.b43
1.00 0.946 0.970 0.934 0.960 0972 0.929 0.94.9 0.9%5 0.944 0.726 0TTy 0724
Structural Break
Brk P avgs expS sups al.M, el.M,; slLM, al.Myq el M, <L, ah;a ahau ah-«
(LN 0. 146 3.216 0.0973 0.193 0244 0.204 0.5 0.152 3143 1) 198 0.0 0046
0.2 0485 0.5458 0412 0.521 0337 0.426 0.50% 0.566 0528 1).6:449 0.256 ) DR
0.3 0TI 0T4T 07N 0.720 0.725 0.HA2 0.745 0.765 0.6A41 0.Ta2 0500 07T
0.4 0816 081D 0802 0.776 0772 0.657 0n.RX17T ). 806 0.7 0.6l 0747 0l76
0.5 ).5%49 0834 0.842 0817 0.798 0.668 H.849 V.832 0761 0.426 0935 0427
0.6 0.841 0829 0.837 ' O.R10 0.805 ) 669 [IR. R0} R V.76 0.243 0THT 0643
(1 0700 0T8T 06874 0.692 0.694 0.580 0T 0.750 ) H6ED 060 0ATT 0 T8
0. 0. 448 05173 Q.19 V. 486 0.510 0410 0470 0.3 30 0508 OOTR 0210 10642
0.9 01T 0211 0.095 0195 0244 0.225 0144 0154 DNEE] 0.H55 .0x9 0227
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Table 3.8: Power: T=200. Bandwidth=£(12)

Uniformly Distributed Structural Break

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BrkSize | avgS  expS  supS ' aLM, eLM, LM, | aLM;s eLM,s sLM;s  ah ahs. ah-,
0.1 Q.063 0.057 0.043 T 0.062 0.051 0.031 0.072 0.058 0.030 | 0.069 0071 1).065
0.2 0127 0.101 0.075 [ 0.124 0.088 0.040 0.132 0.101 0.055 ' 0.093 0122 0.093
0.5 0.430 0.425 0.354 ‘ 0.423 0.406 0.176 0.445 0.432 0.299 - 0.243 0.352 0.266
1.0 0.713 0317 0.651 0.754 0.8356 0.791 0.713 0.760 0.762 ' 0.439 0.524 nN.413
2.0 08300 0932 0715 1 0.872 0.959 0961 0.785 0816 0.823 0474 0585 0473
3.0 0.843 0991 0.756 | 0951 0.986 0.983 0.808 0.843 OR48 1 0.502  0.603  0.502

Unit Root
[ avgS expS supS | alM, eLM, LM | alLM;y eLM,s sLM,, ah ;s ah., -
0.0l 0.0913 0075 9.063 ;| 0.086 0.064 0.0.38 0.091 0.07H 0.039  V.U64 0.095 0.0%0
0.02 0.165 0.150 0.121 i 0.157 0.127 0.048 0.175 0.154 0.091 0123 0.157 0.126
0.05 0.470 0.462 0.381 | 0.466 0.429 0.206 0.479 0.463 0.325 0.324 0.410 0.310
0.10 0615 0.631 0.541 : 0611 0.618 0.384 0.624 0.636 0.526 0. 0545 0.425
0.20 0.696 0.714 0.616 + 0.691 0.704 0.475 0.704 0.716 0.606 0497 0603 0.49%
0.50 0.720 0.752 0.647 . 0.726 0.715 0.485 0.730 0.7573 0.640 ' 0031 0.615 0.542
Fractional Integration
4 avgS expS supS alM, LM, LM, T alM,. LMy sLM,. ah . ah., ah-q
0.25 0.158 0161 0.0 , 0.148 0.131 0.VIT 0.170 0. 164 007} 0145 U148 0.145 1
0.50 0.361 0.335 0.255 | 0.343 0.131 0121 0.366 0. 163 0217 0 239 0.333% 0.253
0.75 0.574 0.605 0.468 | 0.580 0.586 ). 186 0.607 0.439 0.403 493 .39
1.00 0.707 0.752 0.599 0.722 0.719 0.457 0.749 0.628 0526 [IXI R 052
Structural Break
BrkPt avgsS expsS supS alLM,; el M,;  slLM, al.M . el. M, sl M, ah ahe., ah-«
0.1 0107 O.Ll6 049 0.1 0.155 0117 0108 0.095% 0.066 w1t 00TE o4
0.2 0.324 0.370 015 0367 0. 366 0.163 0 154 0413 0.312 N 594 (LS T N T}
0.3 0).588 0.601 0.492 .355 0.5313 020l 0623 0622 0436 0718 0357 0.069
0.4 0714 0697 ).681 1.668 06173 0.230 nTLT 11,699 O ANT 0. 166 0657 0144
0.5 0.781 0.746 0.7 0.716 0697 0.252 0.7y 1).742 0.484 0 I8x (LI ¥ It 0279
0.6 0708 0.6A6 0.669 0.645 0.5%) 0.247 0.720 .68% 0479 . 0 l6o 06T 0459
0.7 0570 0584 0. 448 0.558 0523 0.200 0.609 0.60'3 D402 0 U9y 030 0Ty
0N 039 0400 O IN3 04Tt 0,385 0. tTe [V at 0442 0335 0,074 01Ty oelg |
0.4 0104 0124 0.038 0.1136 0.169 U134 ST N DEI2NY 0.060 10032 0noTe 0144 j
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Table 3.9: Power: T=%00. Bandwidth=¢({0)

Uniformly Distributed Structural Break
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BrkSize | avgS  expS supS . aLM, LM, LM, [ aLM,y  ~LMy  SLM,. 7ah,s  ah ah-q
0.1 0.145 0.148 0.134 + 0.137 0.147 0.124 0.144 0.138 0.125 0.109 0.120 0.107
0.2 0.423 0.443 0.419 ' 0.431 0.429 0.391 0.424 0.444 0.427 0.296 0.369 0.282
0.5 0.39 0.893 0.849 = 0.872 0.908 0.917 0.822 0.858 08632 0.668 0.686 0674
1.0 0.915 0.953 0.916 . 0.936 0.955 0.960 0.90! 0.915 0916 0.820 0.850 0.807
2. 0.957 0.982 0.954 0.969 0.976 0.978 0.950 0.952 0.954 0.908 0924 0.901
3.0 0.954 0.993 0.984 . 0989 0.994 0.997 0.982 0.983 0.985 0.960 0971 0.963

Cnit Root

~ avgS expS supS  al.M,; LM,  sLM, [ aLM,y LMy LM, ah s ah.., -
0.01 0.493 05319 0.496 0.506 0.513 0.473 0.499 0514 0.5300 [ T.T 0.420 0.391
0.02 0.794 0.833 0807 O.80% 0.834 0324 0.792 0.818 ORl4 ' 0.64) 0.696 0.623
0.05 0.976 0987 0.985 0.979 0.986 1).9385 09713 0.983 0.9%6 0827 0 854 0.826
0.10 0.997 1.000 0.999 0.998 1.000 1.000 0.996 0.999 1 000 0896 0.897 0. 900
0.20 1.000 1.000 1.000 ' 1.000 1.000 1.000 1 000 1.000 1.000 0.930 0.934 V.94
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 oo 0.939 0.939 0919

Fractional Integration

d avgsS expS sup$ al M, «INM; LM, LM« sLM,. ah_. ah., ah-, )
0.25 0.795 0914 U880  U.R4] 0923 0.938 ). 868 0.887 519 0.5 32 0.530
0.50 0.999 1.000 1.000 0.999 1 000 1.000 0.998 0.9 0.823 0.A51] 0819
0.7 1.000 1.000 1.000 ' 1.000 1.000 1.000 1.000 1 000 0. 898 0914 .98
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0949 0957 1.952

Structural Break

BrkPt avgS ~xpS supS alLM,;  elM, sLM al.M o LM LMy ah . ahu, ah-, !
0.1 0.h49 U.854 0.704 [(IR.7E1 0911 0.920 0579 0.732 0.2 0699 0.110 0.147
0.2 .59 099 0.996 09913 0.999 099 099 .99 1,999 3997 .74 0 345
0.1 1.000 1.000 1.o0 1.000 .00 1.000 1 D00 1.000 1 o 1. 00 1) 9R” N HOHY
0.4 1.000 1 000 1000 1.000 1.000 [ DOO 1.000 1. 000 1.000 0T 1. 000 ).RI2 i
0.5 1000 1.000 1.000 1.000 1.000 1. 000 I.000 1 oo 1.000 (IR g 1 00U 098
0.6 1.000 1.000 1.oO0 1.000 1.000 1.000 [ O 1 o0 1000 (L1 ) 1 000 TRCL T
0.7 1.000 1.000 1000 1).999 1.000 0.999 1.0u0 1.0 100 66| 0991 1000
Q.8 0.992 ).999 0.998 0.997 [V ) 0.998 0994 (VR 2 ) V.99 0.3 0. 794 (LAY 2 ]
09 11.605 0893 0.6635 0.783 0910 0.925 ‘[ 0548 0 6492 0737 0137 0.270 (LW} J

RE



Table 3.10: Power: T=800. Bandwidth=F{1)

Uniformly Distributed Structural Break

[BrkSize | avgS  expS supS T alM;  eLM, SLM, T aLM,s LM, LM, ah ;o ah.., ah-q
0.1 0.1313 0.127 0.130 i 0.130 0.122 0.086 0.£33 0.124 0.104 alrt 0117 0.09%9
0.2 0.421 0.443 0.407 | 0.420 0.430 0.358 0.425 0.439 0.405 0.293 0.336 0.238
0.5 0.828 0.3388 0.830 | 0.859 0.896 0.903 0315 0.848 0.852 0.635 0.701 0.668
1.0 0.919 0.967 0.918 | 0.940 0.970 0.974 0.901 0.919 0.920 0.798 0.8413 0.79)
2.0 0.954 0.934 0.941 ; 0.965 0979 0.982 0.941 0.946 0.948 0.855 0.891 0867
5.0 0.978 1.000 0.970 | 0.98% 0.994 0.996 0971 0.976 0N9TR 09113 0.942 0.905

Unit Root
a avgS expS supS  aLM;  eLM, «LM, T alM,yv LM, LM, ah o ahs, ah-,
0.01 0.510 0.5%2 0.508 0.519 0.330 0.475 0512 1.528 0315 0.367 0.456 0. 178
0.02 0.747 0.779 0.764 | 0.760 0.780 0.752 0.752 0.770 0.761 0.591 0.652 0.605
0.05 0.952 0973 0.956  0.962 0974 0972 0.946 .96 1 0.961 0.752 0.R16 0).7R5
0.10 0.989 0.994 0.992 ' 0.993 0.994 0.994 0983 0.992 9.992 0 849 0851 .84
0.20 0.997  0.99%  0.997 0.997 ).998 0.994 0.99 0.99% 0.998 0837 0866  0.826
0.50 0.997 1.000 U999 ;. 0.999 1.000 0.999 0.996 0998 0.99% 0.851 0876 ).847
Fractional Integration

o avgS expS sup™ alM,; el M, sLM; al.M,. el M,y sLM,. ah ;s aha, ah-, ]

U.25 0.501 €.589 0.545 0.524 U.589 0.359 U.497 1,563 0,560 0347 . 380 0.358 1
050 0877 0.935 0.904 0.905 0.933 0925 0879 0.91R 099 0644 0.659 0.647
075 0.974 0996 097X 0.9%4 0.989 0986 0.969 0. 980 09T 0.740  0.TNL 0.765
1.00 0.994 1.000 0.999 1.000 1.000 | OO0 0.996 099N 0 99R (L 511 0ORTR 0.RT0

Structural Dreak

BrkPt avgs expS sup$ alLM,  eLLM,; .M, al. M. el M,y LM s ah e ahs, ah-
01l 0.391 0866 0.619 0.751 0,905 0919 0.5213 0 669 [} 0654 13.2%4 0.0
0.2 Q984 0996 0994 0D.99] N9 0996 1 989 0.6 0 9 O 0T’ 029
0.3 0999 0999 0999 0999 0999 (0 9%) 0 999 0. 0.9 LOOU 0977 0395
0.4 1.000 1.000 1.0u0 L0 1.000 0.9 oo 1.000 1Looo 0999 1 OO0 0Hx41
05 1.000 1.000 1.000 1060 1.000 1.O00 oo 1 D00 1 o0 0956 1 000 0957
0.6 1.000 1 008 1.000 1.000 I oo 1 0N 1 Oy t oo 1 OO0 0% 4 1000 099
0.7 0.999 0.999 1.000) 0.9 0999 1) 99 [V T2 [T 21 I (%) 0581 09N L.O00)
0N 0984 0999 0997 ) 98R Lo 0998 0 IRT 1 o0 TR 0274 072 09an
0.9 0.5539 U.R50 0.564 0716 0,897 0. N5 0492 63y N3 R 0.0XY 0242 0622
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Table 3.11: Power: T=800. Bandwidth=£(12)

Uniformly Distributed Structural Break

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BrkSize | avgS expS supS | alLM,;  eLM, SLM, T alM,s LM, LM, ah ¢ ahs, ah-,
0.1 0.133 0.125 0.120 0.124 0.120 0.09 0.135 0.122 0. 107 0.091 0.129 DXV
0.2 0.3189 0.395 0377 0378 0.379 0.299 0.390 0.395 0.350 ' 0.251 0.322 0 256
0.5 0.779 0.8338 V.779 | 0.807 0.856 0.869 0.778 0.79% 0.804 0.567 0.653 0.355
1.0 0.876 0.950 0.872 ' 0.904 0.965 0973 0.8360 0.830 O RBAT | 0.67N 0.761 0.677
20 0.927 0.985 0906 | 0958 0.943 0.986 0911 0.923 0.927 1+ 0.1 0818 0.721
5.0 0.952 0.999 0.928 | 0.930 0.994 0.99% 0.929 0.943 0.945 0.747 0.841 0.760

Unit Root
~ avgS expS supS _ alM,; eLM, LM, Tal.M,s LM,y LM< 7 ah,, ahs, ah-,
0.01 0.458 0.473 0.444 0.460 0.462 0.401 U.467 0.467 0.446 0. 347 0.1 0. 341
0.02 0.710 0.738 0.729 | 0.728 0.756 0.698 0.712 0.746 0.735 | 0.563 0613 .55
0.05 0.878 0.919 0.885 | 0.893 0917 0.882 0.883 0.914 0.890 ' 0.685 0.759 0.643
0.10 0.942 0975 0938 | 0.957 0.978 0.942 0.9% 0.965 0951 07138 TR 0717
0.20 0.934 0.965 0917 0.953 0.969 0.939 0.913 0.959 0.944 0.732 0.770 0.741
0.30 0.953 0.976 0,946 « 0.962 0977 0.944 0.954 .969 0.955 0.779 O.RIN 0.713
Fractional Integration
d avgsS expsS sup$ alM, oM, sLM, TallM e eLMo LM, ah ;o ahq, ah-s
0.25 0.291 0.349 0.307 0.308 0341 0.265 .300 0.139 U308 0.216 t) 260 0228
0.50 0.688 0.758 0.670 0717 0.751 0675 G 687 0.744 0.703 0473 0546 0488
0.75 0.860 09173 O.854 O.R78 0908 .83 0.859 1.901 ).8T3 0631 0 Ton 0.623
{.00 0919 0.953 0.R99 0942 0.957 0.ale 09113 0).940 0.921 0. 700 0757 ).720
Structural Break

BrkPt avgs =xpS supsS al.M, el.M; sI.M, al. M. .My LM« ah ;o ahs., ah- J‘
01 0439 URIT 0T 0645 0.RT1 0 RR2 0384 0523 0591 057 01Tl u0 l
o2 0963 0996  09R3 . Q9T 096 Y95 09T 0995 0999 VOO DBDR D 15A
0.3 0.994 0.999 1.000 1999 0.999 09 1) 99 0. 999 1 D00 1 ov) 0942 C.3s ‘
0.4 1.000 1.000 1.000 1.000 1.000 1.000 10w 1000 1.000 [GET) 0 999 0643
0.5 1.000 1.000 1.000 1.000 L.oOy 1LY} (Y0 Y] 1000 1 O 0 RG L oo O.A92
06 LUOO  LOVO 1000 1 000 1O 0rm 1 000 1 000 1 OOV T B R TR b
0.7 0.999 1000 1.000 .999 1000 0 998 0 999 1 000 1.000 [V} 49956 .00
0.8 0961 0993 O.98| 0976 0.992 1) 989 09Ty 0.994 0 994 WA 0624 0T |
09 0. 436 37T 0. 80 06273 0.834 0871 3372 [1IEY%.1 t) H6h [LX1 Y 0173 0 564 j
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3.1: Break Sensitivity Functions

Figure
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Chapter 4

Extreme Values and Local Power
for KPSS Tests

We establish upper bounds on the statisties 1, and 5j- proposed by Kwiatkowski. Phillips.
Schimidt. and Shin 119927 for testing the null hypothesis of stationarity. The bounds are
attained by cosine functions that do not exhibit the exploding variance often associated with
the alternative hypothesis. We also derive extreme value results for time trends. structural
breaks, and unit roots.

Using these results for extreme KPSS statisties, we develop analytic results for the power
against local alternatives that combine one of these processes with a short memory component.
[he results are surprising. given the origins of the statistic 17, iv that the rejection probabilities
for the test based on 5, are very similar for structural breaks and umit roots.  We provide
a theoretical basis for this last result by showing that 5, is an algebraic spectal case of the
statistic proposed by Andrews and Ploberger (1991) for testing for structucal breaks at an

unknown breakpoint.

4.1 Introduction

We  establish  upper  bounds  for the statisties 75,  and - proposed by
Kwiatkowski, Phillips. Schmidt. and Shin (1992).  While these bounds are of some interest
in their own right because they define an extreme opposite to the null hypothesis. they also
provide a basis for analyzing the power of tests based un 7, and 7-. In particular, our results

for extreme values place an analytic perspective on power comparisons for unit root. time
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trend. and structural break alternatives. We demonstrate that jj, is about as effective as a
test for structural breaks as it is as a test for unit roots.

Our results add to earlier findings that have already revised the interpretation of these
statistics. Kwiatkowski. Phillips. Schmidt. and Shin (KPSS) derive i), as an LM statistic where
the alternative hypothesis is the sum of a unit root process and a stationary component. Their
stated null hypothesis is a short-memory. stationary process. On that basis. they describe the
value of 7], as a test of the null hypothesis of stationarity. Lee and Schmidt {1996} and Liu
{1998} show that 7, is consistent for fractionally integrated [(d) processes with d > 0. This
result necessarily revises the interpretation of the KPSS test because an [td) process with
0 < d < 1/2is stationarity. Lee and Schmidt propose that the KPSS test is more properly
viewed as a test of the null hypothesis of short memory. The alternative hypothesis would
then be long memory, which includes unit roots and fractionally integrated processes.

Unit roots and fractionally integrated processes do not, however. vield the largest values

for 57, and 17j-. For a sample of size T'. we establish the bounds

o< AT

and

- . >

- < (2=

These  bounds are  attained  for  the  processes  y, = costzt/ Ty and
ye = cost2xt /T, respectively. These cosine functions provide benchmarks for other possible
alternative hypotheses, and they give a clear picture of the types of realizations that actually
trigger large values for 1, and 5. They show that 7, is most sensitive to a large change in
the value of y, between the beginning and the end of the sample and that 5. is most sensitive
to data with a complete cycle in the data period.

The results for time trends and structural breaks confirm this observation. The value 5, =
lLUT is attained by a simple time trend. y, = at. where a is a constant. The difference between
157 for a time trend and 7747 = 0.10137 for a cosine function is minimal. A structural break
process with a break at the sample midpoint is a crude approximation to a monotone trend.
and that process attains 5, = l_lz'T‘

Unit roots, which form the original basis for the statisties, generate realizations that may

43
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or may not resemble cosine functions. The values of 7, for unit root realizations are more or
less uniformly distributed between the lower bound of 0 and the upper bound of =~ 2T. The
mean is at the midpoint of ;—Uf which is about half of the bound ==*T = 0.10137. Only
about 127 of realized unit roots have a value of 7, as large as the value ﬁT for a structural
break known to be at the sample midpoint. The mean of l'—”T for a break with an unknown.
uniformly distributed breakpoint is also larger than the mean for a unit root.

These extreme value results establish a framework for studying the power of the KPSS
tests for alternatives that include unit roots and structural breaks. We consider an alternative

hypothesis based on the process
I =L+ TY

composed of the sum of a short memory process r, and a long memory process .. The scalar
~1 sets the distance between the null and the alternative for a sample of size T'. We show that
the power for a small ~ 1 is closely related to the extreme value results for the process y, alone.

Section 1.2 of this paper establishes the bounds for 7, and 5., Section 1.3 presents a
result on asvimptotic local power for processes that combine short memory and long memory
components. Section L4 then presents some calculations for various unit roots. time trends.
and structural breaks. Simulation results in Section 1.5 give detailed power results for various
alternatives,

We provide a theoretical basis for our finding that 5, is about as effective in testing for
structural breaks as it is in testing for unit roots by showing that it is an algebraic special
case of the test Audrews and Ploberger 11994) propose for structural breaks. This derivation

is given in Section 1.6, and Section 1.7 presents our summary and conclusions.

4.2 Bounds on KPSS Statistics

The KPSS statistics 1, and 1j- are computed from two types of residuals ¢, calculated for a
process yp. The statistic 1), is based on the residuals from the regression of y on an intercept.

The statistic 7- is similarly calculated by regressing y, on a constant term and a time trend.

44
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In both cases. the fundamental quantity is the partial sum of residuals
4
S :Zr, 11
t=1

If the residuals are short memory. the long-run variance

a® = lim T'IE(A"%) i1.2)

—
is finite. If not. the residuals ¢, are said to have the lung memory property.
The KPSS statistics can be written as

.1.-2 Y‘rr:l ‘\'«!"

n= = 1.3
! s34
for §j, or j-. The denominator is a kernel-based extimate of the long-run variance a<:
r { T
.s‘z(l}:'[ulZ¢f+'_"["l E wis. ¢ Z Frte . (BRY)
t=1 =l t=e4l
where (s . th = | — 5/(¢# + i is the Bartlett window with bandwidth ¢. For testing under

the null hypothesis of short memory. £ is chosen so that + = ,;,1'1"' <1 to obtain a consistent
estimate of a?.

For the present study of extreme values for 1), and 7. we choose ¢ = 0 even though «*
does not exist and cannot be consistently estimated by any choice of the bandwidth. We are
interested here in extreme values for 1, and -, which occur for process that are not short
memory. The sample variance s4(0) does, nonetheless, have a finite expectation in a finite
sample, and its value provides a convenient reference point that we use in the next section to
examine the powers of the statisties.

We also simplify the analysis by studying continuous time limits. For time trends and
structural breaks. the continuous time version is immediate and we will use the notation
er — ¢ (1) to denote convergence to that limit. For stochastic process. the notation ¢, — ¢(ti
will denote weak convergence in measure to a demeaned Brownian motion for a unit root or
to demeaned fractional Brownian motion for a fractionally integrated process.

The fundamental problem we address in this section is thus maximizing the functional

S e isids) da

~
= il
L2
_IU e (s)%ds

Ry
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over ¢(s). s € [0.1]. While the limits ¢(f) for stochastic processes are not smooth. we will
assume that the maximum for iJ° is attained for a smooth. differentiable process. We let 7%

denote the maximum subject to the constraint

1
/ eisiyds =0 (1.6}
0

We let 77 denote the maximum subject to (-1.6} and the additional constraint

1
/ soefshds =0 (470
0

Proposition 2. For bandwidth € = 0. the limiting KPSS statisties de fined above satisfy the

Sollowing bounds:

i< AT

neo< T
Proof. See Section $.8.1. 0

The bound 7, = 74T occurs for the data y, = yycosit/ T, which is a cosine wave with
a period of 27, This function has a peak at the beginning of the sample. and a trough at the
end. i{'The function y, = weos(7(l = ¢;T) s a mirror timage that also attains the maximum.
The largest possible detrended KPSS statistic 5j- occurs for the data y, = yo cos(2xt/ T, This
cosine function has a period equal to the sample size with peaks at the beginning and end of

the sample.

4.3 Local Power

The bounds on 7, and jj- have implications for the more practical problem of detecting a long
mernory component in a process that also contains a substantial short memory component.

Consider a process
=L+ TS (4.8

composed of the sum of a short memory process r, and a long memory process y,. The scalar

~T sets the extent to which the alternative hypothesis differs from the null. We assume that

16
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1 = O,.(T‘l). Let ij: and 7j; be the KPSS statistics for r, and :; calculated using bandwidth
f. (For notational clarity. we will generaily drop the subscripts 4 and r. We note that the
algebra for the two cases is the sam».)

The critical values for the test are based on the distribution of 7. If we let g(n) denote

the density for the KPSS statistic, then

~
Priigy > ¢) :/ ginidn

We let ¢* denote a particular critical value with Prin, > ¢*) = a*.
We will show that the local power of the test depends on y, only through the expectation

of

=Ty S (L9

While E(W¥} generally grows without bound. it does exist for a finite 7. We define

Ew)
= 5

and assume that the parameters of the process y; are chosen so that v = 1 for a constant

15,. In the cases we consider, .»;'10) will be constant when vp = V.
Proposition 3. If<§ = ™! then the rjection probabilities unde r the alte ruative satisfy

R ' g
Prig. >c)—a" s gt i =2 us T = x. RRL
a

Proof. See Section 4.8.2. ]

The asymptotic local power of the KPSS test depends on the alternative only through v, /a3
and will thus be the same for all alternatives with a given value for 1. Proposition 3 establishes
a square root rule: quadrupling 7" and halving <1 vields constant rejection probabilities.

froposition 2 can be used to establish a lower bound on the sample variance [-_'ta;;tlj))
necessary to achieve a given value for 1),. In the case of fj,. for example. the bound in

Proposition 2 implies that
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Taking expectations of both sides yizlds
E(s}i0)) > =%, ERES

The cosine function that establishes the bound for 7, also has the minimum possible variance
necessary to achieve a given value for 1. In the next section, we address the practical question
of how large E{s;(())) must be to achieve a given 1, for processes that do not attain the bound

in Proposition 2.

4.4 Alternative Hypotheses

Cosine functions are certainly not the most frequently mentioned alternative hypotheses for
the KPSS tests. That honor accrues to the unit root process, with fractional integration a
distant second. We augment this range with a variety of structural break processes and time
trends.

Table 1.1 specifies a variety of process that have large values for 7). The parameters of each
process are chosen to achieve L, = | so that all the processes have the same asymptotic local
power as given in Proposition 3. Table L1 presents Eis3 (001 and E 0 for these processes.
These results are derived in Section 4.8.3.

The unit root process that motivated the original derivation of 7, does not dominate the
set of extreme values for the KPSS statisties. The expected value of 17, for a pure unit root
{process UR is very close to %I which is half the bound set by the cosine function. Table
1.3 shows the distribution under a unit root. which is surprisingly uniform between 8 and
7727, This distribution reflects an attribute of unit roots: some unit root realizations are
clearly nonstationary. but others are by chance not all that distinct in their appearance from
stationary data.

Indeed. i), is more sensitive to a variety of processes than it is to the process denoted UR.
The value i, = -ll‘—)'l" for a simple time trend (process TT} is a close second to the value for a
cosine function. The difference between 5 and =7* = 0.10132 is just a little over 1%. The
value 3, = Tl?T for a simple break at the sample midpoint {process Dy;;} is greater than 1,
for 88% of realized unit roots. If the break is at the point [07]. where [-] denotes the integer

closest to a real number. then 7, = 38(1 —0)T. The average for a break uniformly distributed

4%
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in (0.1]is 557

These results have parallel implications for asymptotic local power. The sample variances
needed to achieve 1|, = | are 9.87, 10. and 12 for COS, TT. and Dy,,. but 15 for UR. The
latter fignre is slightly smaller that the sample variance of 16 needed to attain 1y, = | for the
unknown breakpoint process (process Dgi.

Table 1.2 also shows corresponding results incorporating a time trend. Again. the cosine
sets the bound on ij- and has the smallest sample variance that achieves 1, = 1. .\ close second
place gues to the broken trend that goes up linearly over the first half of the sample and down
linearly over the second half. The statistic 7j- equals &7 for the latter case. This value of
0.0257 is only slightly less than (27)747 = 0.025337. The double break process that takes on
one value between 1/2 and 3/4 and another value on the other two regions has 5. = "—.‘ [ or
0.02087".

Table 4.3 shows the distribution of 5j- for a pure unit root. The distribution covers the

range between 0 and (27)74T, but it is not as uniform as the distribution of 1,. The mean is

about 0.01097.

4.5 Power Comparisons

The powers of 7, and 5)- for the various alternatives described above are partially dictated by
Proposition 2 and Proposition 3. Proposition 2 implies that the power will be bounded from
above by the powers for the cosine functions. Proposition 3 gives an asy mptotic local power
approximation. showing the local powers are equal for processes with equal values for 1. The
remaining issue is the very practical question of power for larger values of ~ for processes that
do not attain the bound in Proposition 2. We approach this issue using simulations.

Tables 1.4 and 1.5 present rejection probabilities for a variety of alternative hypotheses for
Nu and -, respectively. [n all cases. the short memory component is r, ~ Ni0. li. The
alternatives y, are described in Tables 4.1 and 1.2, The alternatives are parameterized so that
1y, = 1. equating asymptotic local powers, and that characteristic is evident in the results for
small 4,. The results also confirm that the cosine functions bound the powers. The results
(after scaling) are very nearly identical across sample sizes of 50. 200. and X00.

The results for the three non-stochastic processes (COS. TT, and D,;» in Table 4.4 and
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COS2. TT2. and D2 in Table 4.5) are very nearly identical for all values of yr. The precise
shape of the y, process is evidently less important than the fact that the shape is non-stochastic.
The power for unit roots with the same 1, is similar for small values of <7 but lower for larger
values of vr.

To put the power for unit roots into perspective. we compare those figures with powers for
four types of structural break processes in Table 4.4.! There are two sources of randomness

involved: the location of the break and its size. Section 1.8.3 shows that
1y = 1081 - 0i%0* 12

for a break of magnitude ¢ at point 8. If a randomly located break is too near a sample
endpoint. it is difficult to detect. In terms of (41.12), ¥, from equation L9 is small if # is near
0 or 1. This causes the rejection probabilities to be smaller for Ds with a uniformly distributed
breakpoint than for D, ;. If a random-sized break is small. it is also difficult to detect becanse
¥ is small if 67 is small. The simulations use a normally distributed break size, which puts the
highest probahility density on the area around a break of size zero. emphasizing this effect.
As a consequence. the rejection probabilities are larger for Dy, and Da than for Dy ; \ and
Dy N

The unit root process. which motivated the original derivation of 5, has rejection prob-
abilities that fall between those for Dy, ; and Dy and those for Dy ;v and Dy \. For large
~r. a break is easier to detect than a unit root even if the break i~ randowmly located as long
as the break size is clearly not zero. For the break processes with normally distributed break
sizes. the unit root is a little easier to detect. This would likely not be the case if the break
size were stuchastic. but bounded away from zero.

Overall, however. the differences in rejection probabilities are minimal. While the precise
urdering depends on the specifics of the structural break process. the KPSS tests can he

considered as effective in detecting structural breaks as they are in detecting in unit roots.

! For large 1. the powers of these tests depend on a complex interaction between the distributions of W and
33(¢). which are not independent. and the density g(n:).
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4.6 The KPSS Test for Structural Breaks?

It is not entirely surprising that i, is sensitive to structural breaks. In fact. i, is an algebraic
special case of the statistic Andrews and Ploberger {199-1) propose to test for structural breaks.

The general form of the test they propose is a weighted average of LM statistics
/J(H‘,ll..\lw)dt)_ t4.13)

where 0 € (6;.0;) C [0.1] parameterizes the location of the break in the sample and J(4)
is a weighting function. For a structural break with an unknown breakpoint. Andrews and

Ploberger recommend uniform weighting J(0) = L. producing the test statistic
/l..\li()}({t) [RRRY]

To compare this statistic with 7). it is necessary to examine the details of the LM statisties.

Consider a model
Y = + .fl{, P+ 0y

where d, ¢ is a dummy variable equal to | for t < i and 0 for ¢ > 1. The log likelihood function

r
o ! Z
.\.‘,{ = :,—; ‘llf - - ill, ('24
-0°
t=1

where @ is the variance of 5, has a gradient with respect to 4 given by

OSSR l d |
- = — d, 60, =
ad a Py

B

)

3

This is the same 5, that enters the KPSS calculations (4.1, Using V(S0 = 611 — fio?. where

i = [0T]. and substituting the estimate 206 for a? vields

2

O =
LM6) TOUL — 012 (6

We can thus write the KPSS statistic as

B, = /ou — O LM (91d0. (115

which is (-£.13) with the weighting J{=) = 8(]1 - 6).
The differences between (.14} and (4.13) are minimal because 8{1 - 8) i~ nearly constant

except at the extremes of the (0. 1] range. In fact. Andrews and Ploberger state that the
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calculations must omit values of 4 near ) or | to avoid technical problems. The summation
for 7, is not subject to this limitation because the factor #(1 — 8) is effectively a continuous
counterpart to the sample trimming Andrews and Ploberger recommend.

Indeed. this similarity has been mentioned in passing by Andrews et al. (1996} in the context
of the test Nyblom (1989) proposed for parameter changes under martingale alternatives. This
general alterpative specification encompasses several interesting departures from constancy
including a single jump at an unknown point in time (the change-point problem) and slow

random variation (a random walk).

4.7 Summary and Conclusions

One way to describe a test is in terms of the assumptions accompanying its derivation. The
statisties 1, and 77 were originally developed to test for the existence of a unit root component.
Lee and Schinidt (1996} refined this deseription to portray 11, and 177- as tests for the existence
of a long memory component. Andrews and Ploberger (19941 derive 1, a~ a test for steuctural
breaks. On this basis, one might describe 7, as a test of the null hy pothesis of short memory
against an alternative that includes unit roots, fractionally integrated processes, and structural
breaks.

One can also characterize a test in terms of what it actually detects. We show that g,
In most sensitive to a cosine function with half a cyvele during the sample period and that
17- is most sensitive to a cosine function with a full cycle during the sample period. On this
basis. one might describe 77, and - as tests for cosine functions or. more generally, as tests
fur realized processes that happen to resemble cosine functions. In the case of 5. the value
for a time trend very nearly matches the bound set by the cosine function and the value for a
structural break at the sample midpoint is only a little smaller.

We also consider the more practical comparison between the unit root alternative and
structural breaks at an unknown breakpoint. While 7, is greater for a pure structural break
process with a break in the middle of the sample than for 88% of realized unit roots. an
unknown breakpoint uniformly distributed in the sample has an average 15, only somewhat
higher than the mean for realized unit rvots. The simulation results here show that 7, is

equally effective in detecting unit roots and in detecting breaks at an unknown breakpoint.

52
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An important caution is implied by the fact that 1), is described as a test for unit roots by
KPSS and as a test for structural breaks by Andrews and Ploberger. [f 7}, is large enough to
reject the null hypothesis of short memory. it would be entirely misleading to cite KPSS and
claim discovery of a unit root just as it would be misleading to cite Andrews and Ploberger
and claim evidence of a structural break. The only appropriate conclusion is a rejection of the

null hypothesis of short memory.

4.8 Proofs and Calculations

4.8.1 Proof of Proposition 2

We seek to maximize

U
NEdt
A = Jo “rl = (L6,

where
t [}
~e :/ yhll/.\ - l/ yiridr LT
0 0

v
-

| !
$° :/ <yqt| —/ ylri:lr) dt.
0 v ;

Our strategy i~ as follows. Differentiating (41.16) with respect to ylay yvields a condition

and

that ylai must satisfy. Differentiating this condition with respect to « then vields a differential
equation that yrai must satisfy for all u. Differentiating a second time yields a second-order
differential equation that dues not involve the integeals in (£.17).

We differentiate (1.16) with respect to yia) using the Frechet derivatives

IS, =t t>ua
dytar ) i t<a
and
) 1
Js* . L,
— = 2yla) - / yiridr)
Jyla) 0

to obtain the derivative

1 -»
1 o, S =t dt Y1 = ) S,dt S |
L L i) = [ wridrs
e 0

2 Jytay 8¢

(s
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Equating this to zero yields

(yla) = fo ytridri  [Hi=tiSdt  [1(1 = tiSdt
. = +

52

KA Jo SEdt

Differentiating both sides with respect to a yields

dyla

a~, (1 —al~,

V/da _

S

which can be simplified to

: s TS

dytai/ia

4

g

f”l .";"df -

We thus have that the maximum KPSS statistic is attained for data following the recursion

Substitute the definition for N,

dytay

) da

We then need to tind solutions to

4 yla)

dat

Fhe residuals

have the property that

We can thus rewrite | LIS} as

dyta)

Ja

1 t
(/ ylids —u/ ylruh')
v 0 ;
!
= —I}:l (y(m -/ _4/11'1:17')
0

1
elay = yla —/ ylridr
V]

= S

~—1

-,

2 ‘ a2 .
e (uh doyral
da* da*

)y
e (ay ~} .
= -1 e{ar.
da? lu ‘

The solutions to this differential equation are of the form

w h(‘l’(‘
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We are. therefore. looking for solutions to {4.19) with

S costhkt + c)dt)’ da

- (4.2
fol cos?ikt + c)dt — [fol cos{kt + cjdt

Ny =
Using

[}
/ cosikt + cidt = k= 'sintka + c) - k- Ysin(e.

0

the numerator is
2

1 1 \ ! § -1
/ (/ cos(kt + r)dl) = / k™2 (kt + cidt - .’/ k™2 ain(kt + cisin(cidt + / k3 ain? (c)dt
0 [\ ] 0 D)

k=2 k-8 y v
= sin(kicosiky + 2k sinfcitcostk + v ~costeny + k7 %sin"(ch

The denominator is the sum of

|
/ costikt + erdt = L+ Le7 sk + creosthk + 00 = Lk Ysintercosien

.
(1)

and

) 2
[/ rostkt + r,ult] =k stk + o
0
Putting all this together. we have

- L,k—lsin(k + cicosth + 01+ 2sngerlcostk 4+ ¢ = cos(e)r + sincie
+

-~ -2
n==k"- - ——— - ; - N
k=Ysin(k + cicosth + ¢y = Lk=Ysin(cicosie) — k=2simdtk + o

ol

1
2

We need to find the values of & and ¢ for which the fraction on the right equals 1. This
happens if sinted = 0 and sintk +¢) = 0 implying that the maximumoccurs for ¢ =0 and & in
the set of values 1.21.3x. . Checking the values of (£.21) shows that the & = = determines
the largest possible KPSS statistic 747

The bound for 1. follows directly from this result. The statistic 7}- can be calculated
for a variable w(t) by detrending that variable to produce restduals denoted yiti and ther
calculating 7, for y(¢). The bound on this 7, is determined by the above analysis with the
further condition that y(¢) must be detrended. The choice & = 27 produces the largest 1,

with this property because y(t) is trend-free for k = 27 45, . ]

ot
-t
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4.8.2 Proof of Proposition 3

We can write the KPSS statistic as

ye T . o
~ 1 IZ,-_.I‘:’:I'*.,'TH;;!,'Z

"_ N
" HL
or as
=257 2 a2 o PPE L ol B
,—; _ 1 Z!:l‘\rt +.’;1’r Zr:l‘\f“\y-’ + "Tr Zf:l‘\y!
) ST+ 8306 = s

[t will prove convenient to reorganize these terms as

~ ’7:+l
0. =
1+ B
where
- r o o »[_gs-r <2
\ = ~r Zl:l‘f"!l’ o2 it =1yt
= - Y T 2
sett) seit)
and
n .s_t‘lf"l - s“:H‘l
- \i“l

This allows to express the rejection probability as

Prig. >c"r= Prige > el + By = 4

[ntegrating over the densities for r and y yvields.

Prig. >¢% = //(,'(v‘tl + By =\ flyifurdyor

where (Gie) = Prig; > ¢i. Using Prige > ¢*) = o and (Giei/de = —glei. we can expand

Gle* {1+ By - 4) = (/{c") to obtain
Pring. >¢") —a* = ylr'}//(.l —c"B) fiy) fleidyir (1.2

We can analyze .1 and B a~ follows. The fact that r, and y, are independent implies that

r

//‘,,'."T" Z SeNyfly) firidydr = 0.
t=1

The definition of 1}, then yields

r
/'['_‘Z.\';,f(y}dy =1y.

t=1
26
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Together. these give us

I Af firiyor 4,

2T = Z7gt
/ I ‘:'T[ar

The fact that r, and y, are independent also implies that
sf(f) = .s'f.(l) + ‘;;'uﬁ"y(i:l.

From this, we obtain

ff [;fty:'f(l')()y(ir _ s;'(f]

— = — - 0.
~l I sifé)
We can now substitute these results into (11.22) to obtain
Prip. >cv—a" = g(c” ) 4——.
»ilal

4.8.3 Notes on Calculations for Tables 4.1 and 4.2
Trends

TT: y. =t

v
o
=
I
-
=
|
el
-
K=
-
[
-l
"
+
Zl-
&

— 1 1:5 [ 1.3 1 t
= m”—-,' _.'—4”—3! *ﬁ’|u
= L L1 3-10415 _

- 320 6 64 9640 P

TT2: yy =tfor0<t < /20y =1/2 -t for I/2< ¢

i

1/2
2 9 LWy — L
S _/ u—‘ydt_“
0

IN

From 0 to 1/2,

1 £/2
.2 . % ] 142 t — !
0 0

-l
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Breaks
We derive the result for an arbitrary break located at 6. y, = 0 for t < [0T): y = 0 for
t > {67].

st =0[(1 - 0)3)* + (1 - 6)[04]*

2 =8l - 0)62

I 4 1
/ St :/ (i1 = 60)at)* dt +/ (0901 — 3]° dt = L1 - 93%0%°
D)

0 [
D,;;: Do the obvious substitution.

Ds: Break with ¢ uniformly distributed on {0.1].

1
/ el ~ hde =}-.
0
1
/ l):(l - /)\"d() = 9+)
(V]

D,;; v and D, \: Use the expectation of the square.

D2: y =L for0. 1/4and (34 sy = =1 for (12,3, 1).

.~

“-)—

Unit Roots

UR: e =y + 2. 5 tde Eiz ) = 00V (200 = 1. We will use the two leminas:

1 d
E (/ y,’d:) :/ tdt (423
[}) 0

E (/ y,dl) = / t4dt t-1.24)
0 0
1 : ol 2
[‘.'(s"} = / y,"dl - (/ y,dt)
0 0
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Dl

ol
|
il
I

i 1
:/ tdt —/ t3dt =
0 0
t 1 t
E [(/ y,di) (/ y.di)] ={l- !)/ idi £4.25)
0 t Q

2

1 1-t
E (/ y,di) :/ Bdi+ 11 - 0)7? {1.26)
t 0
t 1
St :/ ydi — l/ wdi
0 0

Rearrange as

t !
#',:(l—-t)/ y,tli—l/ Yy
)] t
1 N t | \ 1 .
.\'l" =(1 -t (/ y.dt) -2l -t (/ y,di) (/ y.«h) +t° (/ _:/,rl:)
\J 1) 0 t t

Use independence (-1.251 of the middle term.
t ) t L=t
Eisii =l —zj.-'/ Pdi = 21 - r,-‘/ ,.1.'+:~‘/ i+t - n¢
0 ) u
EASE =l =053 =200 =038 2 + 351 = 0333 + 11 - 0
E(S3H = (=003 =t +(1 = )/3 +1]

E(SH =1 = 13173
! i
[‘(/ .\'r"):.—l-/(l—“:l',d[:—l—
o 30 Jo 90

L ) 1 .
/ (1=6)°dt = = -
o 1.

UR2: These results are derived from simulations.

-t
+

-t —
|
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Table 1.1: Expected Values for 7, and s}(0) for 1}

Process | Description N s510)
oS ye = 2Y3zcos(xt/T) 72T =2 =987
TT ye =3t 3 =120127-! wsT 10
Dy/2 g = 0dyja,. 0 = ARV £T 12
Process | Description Etpy E(s;100)
D2 N Y =0dy/2,. 0 ~ V(0. IR) ! 12

Ds ye = dde . & = 9042 &l 16

Do v yr =0dg . 6 ~ N(0.90) =T 16

UR Y :yf_;-('-:‘,.(rf:!)()/r :,II—)I' 15

dy o = {1 for t < [8T]. 0 otherwise}. 7, ~ N(0. a7,

60
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Table 1.2: Expected Values for 7j- and s7(0) for 1},

Process | Description - s510)
OS2 y = P xcos(2xt/T) (250737 ()2
. (480172 fort < L. )
TT2 = _ =2 LT 10
T 80—y fore> LW
b2 "= _.ml/‘:z fort € [37.3T].. iy "
+4812  otherwise aa

Process | Description Ein-) E (si(l)))
UR2 Ye = Yo+ 5. 0 = 1200/T 0.0109T %0

61
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Table 4.3: Distributions of 7, and 1- for a Pure Unit Root

a [ Prig, < az 1) | Pr()- < a{23°°T)
0.10 0.051 0.013
0.20 0.130 0.145
0.30 0.301 0.320
0.-40 0.1402 0.494
0.50 0.490 0.645
0.60 0.592 0.764
0.70 0.697 0.%69
0.80 0.820 0.951
0.90 0.9-16 0.996
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Table 1.4: Rejection Probabilities for 17, where y = r, + 42,

T = 50
gamma | COS TT D¢;) D(:.\V) D(s) D(.N) UR
0.00 0.050 0051 0.054 0.051 0.048 0.052 0.057
0.02 0.070 0.073 0.074 0.073 0.075 0.072 0.072
0.04 0143 0.1 0.i38 0.137 0.145 0.143 0.142
0.06 0.253  0.249  0.250 0.232 0251 0.218 0.224
00X 0412 0414 0408 0.32% 0.384 0.28% 0.325
0.10 0583 0583  0.566 0.413 0.529 0.369 0.399
0.12 0.730  0.737  0.733 0.4x9 0.633 0424 0. 4x1
(VRE] 0860 0.856  0.851 0.5:41 0.708 0.469 0.536
0.16 0.935  0.939 0932 0.58% 0.766 0511 0595
0.18 0974 0975 0972 0620 )79 0 545 0640
0.20 0.991 0.990  0.9%9 0.659 ).x819 0.572 0679

T = 200

gamma | COS TT Di;) D(L.N) D(¥) D(.N) UR
0.00 0.052 0049 0051 0049 0031 003 0051
0.01 0073 0074 0074 0073 0073 NOT2 0070
002 0140 0145 0141 0145 0113 0143 013N
0.03 0.263 0261 0.264 0248 029 0222 0230
0.04 0411 0422 0413 0320 0105 0297 03x
0.05 05391 0595 0592 0112 0336 0367 03l
0.06 D.TIT DT 0T 04%2 0631 0123 0500
007 0XT3 0NTS 0Ny 541 071N 04T 05T
0.0% 0939 0939 0.93 05390 0768 NDBIT 0630
0.09 0978 0977 0977 0624 .79 0.519 0651
010§ 0992 0993 0.993 063% 0822 058 0720

T = 800

gamma | COS TT D( % y Dy ; N) D) D(e.N) UR }
0.000 0.052 0030 0.04% 0.053 0.053 0.050 0.050 !
0.005 0.073 0073 0074 0.072 0.070 0.071 0.070
0.010 0143 0141 0.140 0.1.44 0.144 0138 0.1:39
0.015 0.27 0268  0.267 0.244 0.256 0.221 0.234
0.020 0.429  0.421 0418 0329 0.399 0.300 0.339
0.025 0.596 0.606 0.597 0.420 0.339 0.371 0.4135
0.030 0.751 0.73% 0.756 0.485 0.639 0.426 0.514
0.035 0.872 0.873 087"y 0.559 0.714 0.452 0.986
0.0-40 0.939 0944 0942 0.609 0.767 0.513 0.634
0.0:45 0.9%1 0975 0981 0.631 0.802 0.554 0.688
0.050 0.993  0.994  0.994 0.661 0.813 0.577 0.732
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Table 1.5: Rejection Probabilities for 5j- where y = £ + 32

T = 50
gamma | COS2 TT2 D2 UR2
0.00 0.052 0.057 0053 0.053
0.01 0076 0.077 0075 0.076
0.02 0.13x% 0.142 0137 9.129
0.03 0.2:46 0.254 0.240 0.221
0.04 0.396 0.306  0.300 0.332
0.05 0.56-4 0.357 0533 0433
0.06 0.714 0716 0.714  0.512
0.07 0.843 0847 ON36 0.5X4
0.0% 0.921 0.9206 0916 0617
0.09 0.969 0068 0966 ).703

010 0.0 090 098 0.716
T = 200
“gamma | COS2 TT2 D2 UR2
0.00 0055 0.03 0.055 0049
0.01 0072 N06x 0078 00T
0.01 0.139 D136 oi3t o139
0.02 0217 0.251 0252 0233
0.02 0.102 03958 0.2 0383 |
0.03 0.56% 0574 0.57D 1) 66X
003 0.730 0727 0723 0563
0.04 0.85-1 0519 08350 0).650
0.0l 0935 0935 0932 0722
0.05 0971 0971 0971 0.771
0.0 0901 0991 0.991 0.829
T = 800

gamma | COS2 TT2 D2 UR2
0.000 0.056 0050 Q05 0.052
0.003 0.069 0.081 0074 0.066
0.005 0.137 0.13% 0134 0. 141
0.007 0.250 0.251  0.253  0.246
0.010 0.407 0411 0402 0361
0.013 0.7 0.572 0580 0477
0.015 0.720 0.732 0.732 0.533
0.018 ).R3>8 0.856  0.357  0.659
0.020 0.934 7.034 0936 0737
0.022 0.976 0.972 0973 0.790
0.025 0.992 0.990 0.992 0841

6-4
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Figure 1.1: Power Functions for 5, where y = r, + 2,
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Figure 1.2: Power Functions for 5j- where y, = r, + 2,
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Chapter 5

Distinguishing Between
Structural Change and Unit
Roots

We propose a two-stage procedure for distinguishing between structural change and unit roots.
Given a first-stage test result that rejects the stationarity hypothesis. we conducet a second-
stage test on sub-samples to consider whether the entire sample appears to be nonstationary
or whether the nonstationarity can be attributed to limited sub-samples. This second-stage

test is shown to be effective in discriminating between structural change and unit roots.

5.1 Introduction

This chapter expands upon the results of Chapter 3. which provided a unifying algebraic frame-
work for tests for structural change and tests for nonstationarity. illustrating the fundamental
similarities linking the two disparate strands of the literature. The practical implication of
these similarities is that the differences among the tests are minimal for a range of alternatives,
including structural change. unit roots, and fractional integration.

The results also identify an important pitfall. [t is quite misleading to conclude that a
process is a unit root if you reject using the KPSS test, but that it is a structural change if
you reject using the algebraically equivalent Andrews and Ploberger formulation. The best
vou can say with either test is that. if you reject the null of short memory. then the process is

not short memory.
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Structural change and other forms of nonstationarity are not. however. identical. and we
introduce a new test that effectively discriminates between the twe forms of long memory. We
can express the general approach we take in terms of a two-stage hypothesis testing structure.

The question of primary interest in Stage | centers on the null and alternative hypotheses

H() : Ye = ¢

H,: Yt I+

where ¢ is a short memory process and uy is a long memory process. We partition the

alternative H; into two Stage [l hypotheses

H., : Yo = o+ oy

H Yo = 0+ e

where r, is a unit root process and o, i~ a long memory process that is not a unit root. In
particular, we are interested in a prominent member of H,. a sub-set we call /{;. For H,.
dy is a structural break process, with a single permanent change somewhere in the sample.
We choose our notation for the Stage [1 hy potheses in this way to highlight the recent work
relating structural change and long memory.' In this sense. a unit root can be thought of a~ a
structural break process with a break in every period. Hence our use of the notation | for
the unit root alternative.

We propose a procedure for distinguishing between {1, and H . Given a rejection of
short menory using a statistic A, we propose calculating A for sub-samples of the data. The
procedure is motivated by the Stage Il alternative . The basic idea is that the subsample
results should show a localized rejection in the case of a single structural break and widespread
rejection in the case of a unit root.

We show that the test is consistent and that the empirical performance of this two-stage
test is surprisingly good in distinguishing between H | and . If the KPSS (or Andrews) test
rejects the null of stationarity. the probability that the second stage test correctly classifies the
type of nonstationarity is reasonably high. On the other hand. the Stage Il test is completely

meaningless without a first-stage rejection. We also look at power for two additional members

! See Parke (1999). Diebold and Inoue (2001). and Granger and Hyung (1999},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of H,. an interior break and a fractionally integrated process. While our test performs well
for the interior break. it seems to have very little power against an [(d) process. particularly
when d is in the non-stationary range. This agrees with the results of Lee and Amsier (1997)
who find that the KPSS test has the same order in probability under both a unit root and non-
stationary fractional integration. Further. our test louks for heterogeneity while [{d) processes
are homogeneous.

We will organize our discussion as follows. Section 3.2 introduces the test between unit
roots and structural change. Section 5.3 derives the asymptotic distribution under f{. and
Section 3.1 provides critical values. Section 3.5 derives the normalized break response functions
for several statistics of interest and Section 3.6 discusses consistency. Section 5.7 gives evidence

on the power of the tests, and we summarize our results in Section 5.8,

5.2 A Subsample Test

If the Stage | test rejects the short memory hypothesis, then the next natural question is
whether the evidence can plausibly be accounted for by a unit root explanation (H_) or
whether it points to another member of H,. Here, we propose a procedure for distingnishing
between these two cases that is motivated by a specific Stage 1l alternative, the hypothesis #|
that there is a single break in the sample.

Consider the unit root model
= e + Uy (a1

where u, is a stationary mean zero process with long-run variance ¢,% We assume u, satisfies
the regularity conditions of Assumption 2.1 in Phillips { [987). which requires the existence of
absolute moments of order 4. for some .3 > 2, and a-mixing with mixing coethicients a,, such
that 3"~ a7 <X Let M= {1 T —k}. 1 < k < T. denote the set of subsample
starting points. For m € M define the sub-sample residuals from a regression of = € [im. m+k]
on a constant as

m4k

- =t § - 8 o)
tmom4n = Smen — k <1 1 <n f ‘ ""-),'

t=m

The sub-sample residual partial sum 5, m+[rk]- Which will form the basis for our statistics. is

6%
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given by
n
Smmtn =Y fmmar. L <n<k (5.3
=1
Let (. k) denote a statistic with a null hypothesis of short memory applied to a subsample
starting in period m and of length k. (The tests discussed in the previous chapters would thus
be denoted \(1.T).) For example. Mm_ k) could be a KPSS statistic (or an Andrews statistic)
calculated over a subsample of the data. Our proposed subsample statistic for testing the
hypothesis £/ of a unit root process is given by
avg A\ (m. k)
- A -
N(h/Ty = ™M (5.4
sup A fm. k)
me M

where the 1 denotes the particular underlying stability statistic used in the computation of

Ak T, Several candidates for \ik/ T present themselves from the discussion in Chapter 3.

(AHBT(0.50 Atk = AN

mm4k/2

k
(\\g\\' '\.'(’“-ki' =k~ ’Z : 'v.:| 4
n=|
ESIII)Sl '\5("'~k' = k—: sup .\'-.:. men
nefl k]
tl=t,)k <2
(AvgL Mz Adtm k. oyl = [k’(l - ‘_’:0}]-1 Z "‘ m m+'vln
n=r,k L k - E’
.\‘2
{SupStToi} stk =4° sup mmn

nefzak (1-rk] 3 (0= F)

In a Stage | test, the statistics above are normalized by dividing by an estimator of the long-
run variance of u, in equation (5.1}. Although under /| the long-run variance does not exist,
the estimator for any finite T impacts the numerator and denominator of the asymptotic
distribution of each statistic in the same way and thus its effect cancels out. The distributions
of \i(g). 1= 1.....5 under H-_ are given in the following section.

Motivated by f{,. the intuitive basis for this test is as follows. If the true model has a single
structural break somewhere in the sample. then the large values of A{m.k} will tend to be for

the sub-samples that overlap the structural break. The average M. k. on the other hand.
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will reflect the extent to which all the sub-samples support the hypothesis of nonstationarity.
Since most of the sub-samples will not include a structural break. the average will be much
less supporting of the nonstationarity conclusion than is the supremum. For a unit root. where
the sub-samples are in fact generated by a homogeneous process. the ratio of the average to

the supremum will tend to be a larger number.

5.3 Asymptotic Distribution Under H.

This section establishes the convergence of our Stage Il statistics to their asymptotic dis-
tributions. We use these results to justify the simulation of critical values in the following
section.

We will first define some notation for sub-sample Wiener processes. Then we will show
that the partial sums from sub-samples converge to these Wiener processes. Finally, we will
put these together to find the distributions of our statistics.

We begin by gathering some useful definitions that hold for a contiguous ~sub-sample of
length ¢ € (0. 1] beginning at a point b. b € B where 8 = [0.1 - ¢]. Define the sub-sample

Wiener process Wb q.ri for r € [0, 1] as:
Wb g.rv=q 2 Wb + rgi — IWib]

where {171 is a standard Wiener process. Then the demeaned sub-sample Wiener process
Wby r1is given by
1
Wob.g.ri= Wb g ry - / Wb, q.5)ds.
0
Finally. denote the continuous time analog of the sub-sample partial sum of a demeaned Wiener

process by

byryg
Qib.q.ri = / Wb q.aida.
b

Since w, in (5.1) is stationary, the following invariance principle for the convergence of
Im m4{rk] t0 a sub-sample Wiener process holds as T'— x. For &/T constant and r € [0.1].

m4[rk]
e L A S TR M IR LR S (3.5]

J=m

T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here — denotes convergence in distribution and [-] denotes the integer part.

The following lemma provides the building blocks for the asy mptotic distribution of \,(qi.

Lemma 2. Giren the regularity conditions on u, and the sub-sample incariunce principle
abore
(i) k=32 m[rk] = Oy 0' W (b.q.s)ds
(i) k=Y 3% o srk] = o Wb 1)
(ii1) k™Y 250 k] = 0L QU g 1)
(iv) k=382 mafrk] = al?Q(b.q.ri’

Proof. From (5.5) above, (1) follows directly. To establish (iii. note

k
-1/2 — =l -1 -1/2_
k ! tmylrk] = k ! “mom4irk] k E k L i m A

i
— Wby~ a;/ W=ty v de = alW (b1,

0
which proves (iii. (iii} follows from (ii) as

m4[rk]

hery
k- U.,-\'m m<+(rk] = k—l k—”:‘ m m4lrk] — (7. / ‘\.‘h - l‘"t{ll
+lrk] > el [ W

1=m

(ivi then follows from {iii) because
PRI — (kY 2 “20ih g it
e omgrk] — { T m+[rkl,‘ - T, Q( T
which vields the result. g

Lemma 2 allows us to find the distribution of A under a unit root. The distribution for

several different sub-sample statistics of interest follow.
Proposition 4 (\-AHBT(1/2)).
_}:)l_" Qib.q. %:l-‘(lb

supQ(b.q. v
reR

.\1(4” —_

(5.6]

Proof. Notice
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() (T= k) T8 = don? [ 77 Qubog. 4) db
d

. : » 2
(i) k=3 sup (452 ) = 4o %supQib.q. 1)
PR up S s 2 upQUb.g. 3

follow from the application of Lemma 2. The result follows directly. a
Proposition 5 (A-AvgS).

fol_" fnl Qib.q.r)’drdb
sup fol Qub.q.r)dr
re B

gy —

Proof. Notice
() k=Y S — a3 Qb g dr
) n=1*mm+rk] u ) g

(i) (T = k=% 2 S0

B
am=1 n=l*'m m+[rk]

— ot fo T Sy Quboqridrdb

e o ko | 2
iy k=4 sup S50 N2 mark] ™ ol tsup Jo QUboq.ri*dr
me M he B

follow from the application of Lemma 2. The result follows directly. a

Propaosition 6 (\A-SupS).

j;)l—l' sup Qb g. ri‘db
\glgr — i€l 1l th.8)
' sup sup Qtb.y.ri’
he B agv 1]

Proof. Nutice
Gk R S — T sap Qb
nell kj refv i}

o - .2 .2
(i) k= sup sup N2 ma{rk] = Tu SUp sup Qlb.q.ri
meM nell k] beB refo 1]

follow from the application of Lemma 2. The result follows directly. a
Proposition 7 (A-AvgLM(g)).
Jo T LT Qubogry dr db

sup f:-"' Qb.y.r dr
[T

he

Aslg) — (2.9

Proof. Deline Jia) = a(l — aj. Notice

. —-4 ) v=—1 (L=%g)k 2 / s
iy k=31 -To! Lun=r,k ‘\m m4[rk]/ '1‘"’ k’

= 0ut [0 QU r) I rydr

-1
[
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(i) (T = ki~ = 2mod = o T ST S g/ ki
= o [T Qub g ) J g dr db

fiii) k=41 = 27) " “e.;‘)’ MRSV IEVI 3

ol supf Qib.q.r 1 J(ridr
e B

— . . 1-<, _
follow from the application of Lemma 2. The result follows directly. Observe that f_ ™ Jiritdr

G

factors out and cancels.

Proposition 8 (\-SupLM(=)).

fol"’ sup Qib.q.ri*)J(rdb
re(r, (1~141] -
540

Nig)y — y
sup sup Qib.g.ri"/Jir

heB re(e, (L=-2,)]

Proof. Define J{a) = atl — a). Notice

Gy (T = k=% f sup "Tin/k

<
m m+[rk}/
nefr.k (1-r,)k]

ol pl-e 2, .
—art [ sup Qib.q.r= Jirvdr
re{ra tl-ta
{iiv &= % sup sup ~3 me(k)/ S/ K
meM ne(r.k (-1, k] i

fr,""sup sup qu_q‘,-j,"///',.,
teBrefr, (1-7,1]

0

follow from the application of Lemma 2. The result follows direct]y.

5.4 Critical Values

The asymptotic critical values for each \,tq) under the Stage 11 null hypothesis of a unit
root were estimated by direct simulation for ¢ = % using sarmples of size T = 1000 with 10.000
replications. The stinulations were perforimed using the (; A\USS matrix programming language.
Table 5.1 presents the critical values for @ = 0.01.0.05.0.10 and 0.23. The choice of the sub>
sample window. ¢. was driven by simulation results that show it to have good properties in

discriminating against the alternative of a one-time. uniformly distributed structural break in

comimonly encountered sample sizes.
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5.5 Normalized Break Sensitivity (NBS)

In our discussion of power. we focus on the Stage Il alternative ;. For that subset of ,.
we are able to provide analytic results by considering how sensitive the underlying A, statistic
is to a vne-time structural change at =. To compare the sensitivity between the different \,.
it is helpful to look at the value of A, given a pure break process with one break at time =7
Define a pure break process. y,. with one break at time =7, 7 € {0. 1]. of size 0. as

_ | ¢t< =l
Y (7) = ddpix). dym) = £5.10

0 t>=l

Consider the function »(7) that maps y (7} to its statistic value Ny, (7).

ntxr = Mysh £5.12)
Nz = L— ERRE
sup Age(ry
re(u 1]

We will refer to %71 as the Normalized Break Sensitivity (NBS) function. Denote by 5 and
n° the averages over all possible breaks = for (5.12) and (3. 13 respectively.

To derive the NBS functions for several stability statisties of interest. it will prove conve-
nient to find the partial sums and variance of y (7). Define the residual ¢, = g7 — yi7i and

. . t
the partial sum process N, = Y _ ¢, It follows that

—i=t

N\
-
T

(Fs&(l =) ¢
~No= r - EARY

(Fétt - Lis)® e o=l

The following subsections derive 5,(x) and compute the mean NBS n, for each of the
stability statistics of interest. These values will be important in showing the consistency of
A as well as for the comparison of the empirical performance of the different underlying

sub-sample statistics.
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5.5.1 AHBT(r)

Consider the general AHBT(r) where r = £ is the point in the sample to test for a structural

break when the true break is at point =T. It follows from (5.14; that

ril-x)
- —Iv-zﬁ'z ctl-r r S ¥
T='AHBT(rj = 5——L_ = ¢ """ (5.15)
alril —r) ler)
T >7
552 AHBT(1/2)
From (5.15) it follows that
= r< !
5 fl—v} -2
mimy =
TSI 1
Notice that sup ni(71 = | which obtains at the break-point = = 1.

! 12 T T
R :/ misids = / —d.‘r+/ — T
0 0 Tl =1 t/2 T

1
2 (—_—, + Im‘.’)) x () 356

Since sup 7y = Lat = = /2, the mean NBS is 57 = 0 386.

5.5.3 AvgS

vl r
I~'ag~s = '["'ZA~',",/H"+1‘_‘ Z Nilad
r=l t=el+1

"l -1 Vel = 1%
— / ————r ' ! dr +/ -—-——-——'[ o dr
0 T . (1=

as T = x.. If we denote () = I'"! dvys then

!
N = / tTids
0
1 x 2 . 1 I 4
“(l—=x Tl —=ri*
= / / r—(-———"-(lrd.‘.’i-/ / L‘—r‘}‘lr‘lf"
o Jo T o Je (l—mi

= 1/1%

Since sup sty = 1/12 at © = 1/2, the mean NBS is 3 = 2/3.
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5.5.4 SupS

T='Sups = maxT7*5}/0?

tef1.T]

(-t

sup — =
ref0 x|

sup ——“_”
re(x 1]

= T(l-m

by recognition of the fact that the sup will occur at r = 7 as I' > x. Denoting i3(7) =

1
"Ny = / Tl -mide = 1/6
v

Since sup g7 = 1/ tat £ = 1/2, the mean NBS is 5 = 2/3.

T~'Sup~ = 7(1 — 7) we have

5.5.5 AvgLM(0.10)

For T — ~

«r Nil-vx.)
'["l,h'yl,_\li.'r.,} = -} Z A","/tﬂ"rH -rn+ A Z ."‘.',v/trr‘,rll -
t=x, I t=rl ¢+t

"rl-x HRAREE TR R
- / i‘—:lclr-f-/ —'—h(/r
., THL=r) . il =7

If we denote ng(zi = T~ Aegl M(7y) then

l
/rh(ﬁ)d:
[}
§ l-'l’)_ -
// rH A'(h‘(/' // 'l r.dnl’r
o Je, TEL=7r] ril — 7

005411 for 7o = 0. 10

1l

R

144

Since sup nq(7) = 0.08267 at x = 1/2, the mean NBS is n; = 0.635.
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5.5.6 SupLM(0.10)

The NBS function for SupLM{79) can be divided into three parts: 7 € [0. 7g]. T € [76. | — 70].
and 7 € [l — 7. 1]. Notice that because of the restriction. breaks in the ends of the sample
will result in a test result identical to that of AHBT(79) and AHBT(1l — my}. respectively.

For breaks between 7, and | — 7,

T l.\'up[_ Mizg) = max '1'_".","‘,/(0"r1 [ —rb
te(r, I Til-2.T}]

- —

by recognition of the fact that the sup will occur at r = 7 a~ I’ — x. Denoting 557 =

T='Supl Mz, we have
ol = my) t-r. Pl =
n, = / — ,1”/ 1.1”/ e
w o Toll == .. [ B 7Y

004582 + 0% + 0 0152 = () X961 for ;o = 0 10

14

5.6 Consistency and Power

We are now ready to consider the convergence of \ under H,. a one-time structural break
uniformly distributed over the sample interval. For any given series with one break. the sub-
sample statistic .\ can be written as the sum of two parts. The first term. denoted A, consists

of those sub-samples that overlap the break to some extent while the second term. denoted A.

consists alf those sub-samples that do not.

A=A+ A 13.16)
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where

T-k
. ) _ Iom k)X k)
N = (T=-k" _—
‘ Y wp MR
J€[1.T-k]

m=1

T-k
. (L= Tim kpAom. k)
A = - k)t . d
X ' Z sup  Mj. k)
s€(1.T—k]

m=1

and T is the sample size, k is the sub-sample length. and [{m. k} is an indicator function that
takes the value of 1 if there is a break in the sub-sample {y,,.. . .. Ymak}.

If the break is uniformly distributed within the sample period. then E(\) can be written

E(A) = pECA™S 4 (1= pi B (5.173

Here, pis the probability that the break is in the middle (break points between (k. T-k] & < 1/23
of the sample and the superscripts mid and ¢ nd refer 1o the value of the statistic when the
break is in the middle and ends ([1L.k = 1] and [T = &k + 1. T]) of the sample. respectively.
EiA™ 40 is the same for all breaks in the middle. Breaks that occur in the ends of the sample
are slightly different because there are fewer samples that overlap the break and more that do
not.

These two decompositions of .\ help to set up the following proposition which allows us to

differentiate between a one-time. uniformiy distributed structural break and a unit root.

Proposition 9. Lty = f(: piimids. be the ateruge NBS function for a sub-sample statistie,

A, Firq=k}T at a constant value between O and 172 Under Hy. as I — .

(1) A g — ﬁ—-'.Lu w Forxe k. T -k

(1) gy <k Form kT orx > 1= k/T.

Proof. Given a structural break at tuime 77 the model y, = 0d,(7) + 5, where d,(7) is given

by (3.11). Equation (5.167 vields

Y ]
(r - &)t
AT = ————— Afm. k
' (k/T) sup Ak Z—l tn. k)
SE( L -] m=
(r_k)_; -l —k—1 ! I -x
= oo A OE Z A(m. k) + Z Am. k) + Z A k)
Jeirulp..;.]"“' ) =1 me=vl—k =4l
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This follows frum the observation that given a subsample of length k. a break in the middie
of the sample. i.e. between the points k and T — k. will result in k& sub-samples that overlap
the break-point and T — 2k sub-samples that do not. The k sub-samples that overlap the
break will yvield 5®(m). which is the NBS function from Section 5.5. The remaining T - 2k

sub-samples that do not overlap the break will be stationary series.

mad 1T ‘1._'k)-l . . S N
AR/ = W oplli + Z Adm k) +op 1)
SE€[1 T =k L m=zT -k
iy r (28 -
(I = k! m-— izl =k i
= ——:;;—Knjj; 2: T l—-————;———— + op( 1)
SE(1 T ~k] " lm=rT-k
2l m—(x] - k)
= (T-kt Y ,,;<1_—_—" )
mz=xl -k k
Thenas T' = ~. ¢ = ‘f constant
Ly . " -
A ) — T
—q
which proves (ii.
T'o prove tii). notice that if we define 7' 1o be a break in the middie of the sample

?""‘I'

Yoo o= wE™e kT -4

FELLITD

[n particular, for =™ = k/ [ we have 3" _ | iji = ¢. Then. for breaks in the ends, 77" < k/1

and 73" > (1 = k/T). we have

r:l«ir k
oo < Y o
o=l J=1
r r
Yoour <Y wn
jzeemdT j=T—k
Then {ii follows directly. O

Proposition 9 shows that the power of \ against a uniformly distributed structural break
will only depend upon the distribution of the statistic for those breaks that occur in the middle

of the sample. Further. it shows that the distribution of A for a break in the middle converges

p!]
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to a constant that depends upon the sub-sample statistic \, through its NBS function and the
sub-sample length 4. [t also provides a way to compare the effect on power of using different
underlying stability statisties A, in the computation of the sub-sample test \,. Given two
statistics, the one with the largest difference between its critical value under f/ and 5] will
have more power under f,.

The unconditional expectation of \(¢) under a uniformly distributed structural break has a
surprisingly siinple form that highlights the basis for the proof of consistency in Proposition 9.

It is given by the following result.

Proposition 10. Lty = fol nrixids. be the average NBS function for a sub-sumple statis-

tie. Ny Let ¢ = k/T be fired at a constant value between 0 and 1/2. Under Hy.
EiNdtgiv = qy; asT - ~.

Proof. From Proposition 9 we have A (y) — l—f’ 1. Breaks at the ends of the sample are
slightly different. By using the symmetry of the beginning and end of the sample combined
with the symmetry of 9*1), we can match each break point =7 < &k with its complimentary
break at point I =k + =1 More formally. &7 oy = ©7F i + 7 (i1 Th

ax at | ! RSRILIEED ormatly. 2, —,, M4 =2,y nk ROTEY S FRY S s,
by combining two series of size " we get & synthetic overlapping sub-sarples with full 5=}
functions that are analogous to those where the break occurs in the middle of the sample.
These k overlapping sub-samples are matched with 27 = 3k non-overlapging sub-samples. By
averaging we get an expected &/2 overlapping and T — 5k non-overlapping sub-samples for

series that have a break in one of the ends of the sample. It follows that as T' = x. ¢ = %

constant

4 .

E .\.—nd 1=
L\, g0 —2“ _q)l,l

Putting these two results together. we can find the unconditional expectation. As I' = x.

q = "f constant

Et\tyg)) = (1 =-2q) (r%) o+ (_,(—lq_‘;) n (5.1%)

= {l- q}'l (tq = '_’qz}q: +q"1]:)

= qu

R0
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5.7 Empirical Properties

To evaluate our two-stage subsample test. we divide the outcomes into three categories. For
a given simulation. g gives the proportion of outcomes that fail to reject at Stage I. If there
is a rejection at Stage I. we record the Stage Il results as H; or I depending on whether or
not the Stage Il outcome rejects the unit root hypothesis. Every simulation must end up in

one of these three categories.

5.7.1 Simple \ Tests

In this exercise, the columns of Table 5.2 5.7 contain the percentage of outcomes that end
up in each category. Therefore. a lower percentage in fly will imply higher Stage | power.
For alternatives where a Stage | rejection is likely. our goal is to have the Stage [l outcome
concentrated in the correct category. fl or H . for the given alternative.

Panels A\ D of Tables 5.2 5.1 show size of A for the primal statistics AHBT. AvgS. SupS.
Supl.M(=p = 0.10) under a Unit Root. All four tests have good size properties. The AHBT
has difliculty rejecting Hy in Stage [ and its power suffers, even in the larger samples compared
to the other tests.

Panels A\ D of Tables 5.5 5.7 present the power of \ for the four aforementioned test
statistics against the alternative of one uniformly distributed structural break. The [, Stage [
rejections natch the power of the primal statistics from the tables in Chapter 3. Overall the
power of the test increases with both break size and sample size. Interestingly. the AHBT
beats the other tests across the board for f{| vs. M. but has trouble with #H,. The Stage 1l
tests work well when the Stage I null. /. is rejected with high frequency.

Panels A\ D of Tables 5.% 5.13 look at the power for two other interesting alternatives in
H,. a break in the interior of the sample and a fractionally integrated process. The tests
perform slightly worse for the interior break as for a single uniformly distributed break. Again
the AHBT looks to perform the best. By contrast. the [{d) process is almost always classitied

as a Unit Root. particularly for the non-stationary values where d > 1/2.

¥l
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5.7.2 Hybrid Sub-sample Tests

The empirical results for the simple subsample test lead us to propose a hybrid subsample test
that improves upon the usefulness of the \ test by utilizing a different statistic in each stage
of the test. Panels E-G of Tables 5.2-5.4 show the size of a Stage [I AHBT combined with
Stage [ AvgS. SupS. and SupL M respectively. The hybrid tests significantly improve the size
properties of the AHBT.

Panels E-G of Tables 5.5 3.13 present the power of the hybrid tests. The hybrid tests are

the more powerful primarily because they avoid the weakness of the AHBT which is getting

past Stage [.

5.8 Summary

If you evaluate differences in terms of testing outcomes, then there is very little practical
difference between structural change and other forms of nonstationarity such as unit roots and
fractional integration. This chapter addresses this issue by investigating the properties of a
test designed to discriminate between a unit root and a process with one structural break that
is uniformly distributed within the sample period. The test applies common tests of stability
to sub-samples of the data and compares the average of these sub-sample statistics to their
maximun within the sub-samples. The distribution of this Stage [ statistic is derived under
the null hypothesis of a unit root and the size and power is shown to perform well across
choices of the underlying stability statistic.

The best test is shown to be a hybrid of the statisties for the Stage [ and Stage [I tests.
Using the AvgS. SupS. or Supl.M statistics for the Stage | test and then the AHBT for the
Stage [l test overcomes the size and power prublems of the AHBT for #, while retaining its
sensitivity in differentiating f{, from H~ . Among these tests, the hybrid test that uses the

SupL M for the Stage I test seems to be the most powerful.
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Table 5.1: Critical Values for A(q)

\% >% 10% 25%
‘* AHBT 0.096 0.113 0.131 0.159
DAvgS 0.109 0.132 0.148 0.176
! SupS 0.123  0.148 0.164 0.197
CAvgLMogo | 01D 0134 0149 0.178
P SuplM o | 0134 0.162 0.179  0.214

33
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Table 5.2: Unit Root DGP: A(1/8). 5% ev. T=200

ahbt avgS
sigma | HO H1 Hinf sigma [ HO H1 Hinf
0.000 | 0.946 0.016 0.038 0.000 | 0.953 0.001 0.046
0.100 | 0.269  0.133  0.59x 0.100 | 0.147  0.023  0.%30
0.200 | 0.172  0.124 0.704 0.200 | 0.042 0.037 0.921
0.500 | 0.110 0.076 0.814 0.500 | 0.003 0.045 0.952
1.000 | 0.094 0.053  0.853 1.000 | 0.001 0.03x  0.961
2,000 | 0.097  0.060 0.%343 2,000 | 0.000 0.042 0.958
5.000 | 0.089  0.051 0857 5.000 | 0.000 0.047 1.953 |
supS supl. M
sigma HO H1 Hinf sigma HoO H1 Hinf
0.000 | 0935  0.001 0.0 0.000 | 0.962  0.000 0.03%
0.100 T 0132 0.003  0.839 0.100 | 0.121 0.002 (.87
0.200 ! 0.032  0.017  0.951 0.200 | 0.022 0.017 0.961 !
0.500 | 0.004  0.034  0.962 0.500 1 0.002 0.010 0.95%
1.000 } 0.000  0.040 0.960 1.O00 | 0.000 0.051 0.919
2.000 | 0,000 0.052  0.94x 2.000 | 0.000 0.06X%  0.932
5.000 | 0.060  0.062 0938 ] | 3.000 l 0.000 0051 0.919 JJ
ahbt2(HO:avgS) ahbt3(HO s upS)
sigma HO HI Hinf sigima Ho H1 Hinf
0.000 | 0953 0.011 0.036 0.000 | D955 0.009  0.036
0.100 [ 0.147  0.151 0.702 0.100 | 0135 0156 0.706 i
0.200 | 0.042 O0.141% 0.X10 0.200 | 0.032  0.153 0.X15 |
0.500 | 0.003 0.088  $.909 0.500 | 0.004  0.0x%  0.90% i
1.000 | 0.001 0.062 0.937 1.OOO | 0.000  0.062  0.93x ;
2.000 | 0.000 0.062  0.938 2.000 | 0.000 0.062 0.93x% |
5.000 | 0.000 0.061 0.939 Li()()() 0.000  0.061  0.939
ahbt4(HO:supL M)

sigma | HO H1 Hinf

0.000 | 0.962 0.010 0.028

0.100 | 0.124  0.153  0.723

0.200 | 0.022  0.153  0.825

0.500 | 0.002 0.0%9  0.909

1.000 | 0.000 0.062 0.938

2.000 | 0.000 0.062 0.93%

5.000 | 0.000 0.061 0.939
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Table 5.3: Unit Root DGP: A(1/8), 3% cv. T=500

ahbt avgS
sigma | HO H1 Hinf sigma | HO H1 Hinf
0.000 | 0.946 0.020 0.034 0.000 | 0.93x  0.000 0.062
0.100 | 0.116 O0.141 0.743 0.190 | 0.016 0.056 0.928
0.200 | 0.095 0.063 0.842 0.200 | 0.000 0.045 0.955
0.500 | 0.063 0.063 0.8374 0.500 | 0.000 0.046 0.951
1.000 | 0.057 0.060 0.883 1.000 | 0.000 0.04%  0.952
2.000 | 0.055  0.057 0O.X88 2,000 | 0.000 0.051 0.9
2.000 | 0.055 0.069 0.876 2.000 | 0.000 0.050 0.950
supS supl.M
sigma | HO H1 Hinf sigma | HO H1 Hinf
0.000 | 0.936  0.000 0.064 0.000 | 0.94%  0.000 U.U--)'.f_1
0.100 { 0.012 0.019 0.969 0.100 | 0.00%  0.011 0978
0.200 | 0.000 0.028%  0.972 0.200 | 0.000 0.035  0.965
0.500 | 0.000 0.050 0.950 0.500 | 0,000 0.06:1  0.936
1.000 | 0.000 0061 0.939 1.O00 | 0.008  0.075 0.925 I
2.000 | 0.000 0.053 0.947 2,000 | 0.000  0.070  0.930
5.000 | 0.000  0.061  0.936 2.000 | 0.000  9.050 0920
ahbt2(HO:avgS) ahbt3{HO:supS)
sigma | HO H1 Hinf sigma | HO H1 Hinf
0.000 | 0.93%  0.023  0.039 0.000 | 0936 0.02x  0.036
0.100 | 0,016 0.155  0.x29 0.100 | 012 0.156  0.x32
0.200 | 0.000 0.0T6  0.924 0.200 1 0.000 0.076  0.921
0.500 | 0.000 0.070 0.930 0.500 | 0.000 0.070 0.930
1.000 | 0.000 0.063 0.937 1.000 | 0.000 0.063  0.937
2,000 | 0.000 0.059  0.941 2,000 | 0.000 0.059  0.941
5.000 | 0.000 0.072 0.92% 2.000 | 0.000 0.072  0.92%
ahbt4(HO:sup. M)

sigma [ HO HI Hinf

0.000 | 0.94% 0.028  0.024

0.100 | 0.008 0.157 0.835

0.200 | 0.000 0.076 0.924

0.500 | 0.000 0.070 0.930

1.000 | 0.000 0.063 0.937

2.000 | 0.000 0.059 0.941

5.000 | 0.000 0.072  0.92%
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Table 5.-4: Unit Root DGP: A(1/R). 5% cv. T=1000

ahbt avgS
sigma | HO H1 Hinf sigma | HO H1 Hinf
0.000 | 0.943 0.012 0.034 0.000 | 0.942  0.000 0.052
0.100 | 0.077 0.100 0.%23 0.100 | 0.000 0.060 0.940
0.200 { 0.070 0.056 0.8371 0.200 | 0.000 0.04F 0.956
0.500 | 0.051 0.052 0.897 0.500 | 0.000 0.041 0.959
1.000 | 0.036 0.047 0917 1.000 | 0.000  0.046  0.951
2,000 | 0.031 0.052 0914 2.000 | 0.000  0.042  0.958
5.000 | 0.046  0.059 0.895 3.000 | 0.000  0.045  0.955
supS supl. M
sigma | HO H1 Hinf sigma | HO H1 Hinf
0.000 | 0.94%  0.000 0.052 0.000 | 0.952  0.000 0.04x
0.100 | 0.000 0.036 0.964 0.100 | 0.000 0.016  0.954
0.200 | 0.000 0.042  0.95% 0.200 | 0.000 0.05¢ 0.9
0.500 | 0.000 0.051 0.949 0.500 | 0,000  0.061  0.939
1.000 | 0.000 0.047  0.933 1.000 | 0.000 0.05%  0.942
2.000 | 0.000  0.052  0.948 2.000 4 0.000  0.071 0.929
2.000 | 0.000 0.05%  0.942 5.000 [ 0000 0.075  0.925
ahbt2{HO:avgS) ahbt3iHO:supS)
sigma [ HO H1 Hinf sigma | HO HI Hinf
0.000 | 0.94% 0015 0.037 0.000 { 0.94%  0.015 0.037
0.100 | 0.000 0.107 0.%93 0.100 | 0.000 0.107  0.%93
0.200 | 0.000 0.062 0938 0.200 | 0.000 0.062  0.93x
0.300 | 0.000 0.053 0.947 0.500 | 0.000 0.053  0.947
1.000 | 0.000 0.04%  0.952 1.000 | 0.000 0.045  0.952
2.000 | 0.000 0.055 0945 2,000 | 0.000  0.055 0.915
5.000 | 0.000 0.061  0.939 2.000 | 0.000 0.061 0.939

ahbt4(HO:supL M

sigma [ HO Hi Hinf
0.000 | 0.952 0.018 0.030
0.100 | 0.000 0.107 0.893
0.200 | 0.000 0.062 (.93
0.500 | 0.000 0.053 0.947
1.000 | 0.000 0.048 0.952
2,000 | 0.000 0.055 0.945
5.000 | 0.000 0.061 0.939
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Table 5.3: Uniformly Distributed Str. Bek. DGP: A(1/8). 3% ov. T=200

ahbt avgS

brkSize | HO H1 Hinf brkSize . HO H1 Hinf
0.000 | 0.953 0.011 0.036 0.000  0.950 0.000 0.050
0.100 {0939 0.017 0.044 0.100 : 0.930 0.001 0.069
0.200 | 0.867 0.027 0.106 0.200  0.856 0.000 0.144
0.500 | 0535 0.115  0.350 0.500 V435 0.005  0.560 -
1.000 | 0.272 0.326 0.402 1.000  0.166 0.08% 0.746
2.000 0.147  0.78%%  0.065 2.000 0.071 0.636  0.290
5.000 0.0%2  0.912  0.600 5.000 0.033  0.964  0.003

supS suplL. M

bekSize HO H1 Hinf bekSize Ho H1 Hinf
0.000 0.953  0.000 0.047 0.000 0.960 0.000 0.010
0.100 0.939  0.000 0.061 0.100 0.957  0.000 0.043
0.200 0.869  0.000 0.131 0.200 0.885  0.000  0.115
0.500 0417 0.001  0.552 .500 0.440  0.001  0.559
1.000 0.163  0.03%  0.799 [.000 0.126  0.015 0.839
2.000 0.072  0.522  0.106 2.000 0.052  0.410F 0547
2.000 0.035  0.964  0.001 i 2.000 0.025 0971 0.001

ahbt2(HO:avgs) ahbt3 HO:supS:

bekSize HO H1 Hinf | brkSize HO H1 Hinf
0.000 0.950 0013 0.037 0.000 0.953 00011 0.033
0.100 0.930  0.015  0.055 0.100 0.939  0.013  0.04%
0.200 0.856  0.029 0.115 0.200 0.%69  0.030  0.101
0.500 0.135 0145 0.420 0.500 00487 0115 0108
1.000 0.166  0.379  0.155 1.000 0.163 0383 0.451
2.000 0071 0.x351  0.075 2.000 0.072  0.x55 0.073
3.000 0.033  0.962  0.005 2.000 0.035  0.963  06.002

ahbt-4(HO:>upL M)

bekSize | HO Hi Hinf
0.000 0.960  0.013  0.027
0.100 | 0.957 0.009 0.034
0.200 0.285  0.02%  0.087
0.500 | 0410 0.141  0.116
1.000 { 0.126 0101 0473
2.000 | 0.052 0.366  0.0%2
5.000 1 0.025 0967 0.008
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Table 5.6: Uniformly Distributed Str. Brk. DGP: A(1/%), 3% cv. T=500

ahbt avgS
brkSize | HO H1 Hinf brkSize = H0 HI Hinf .
0.000 | 0964 0.013 0.023 0.000 ! 0.950 0.001 0.049
0.100 | 0.891 0.03% 0.071 0.100 - 0.883  0.001 0.116
0.200 | 0.742 0.092 0.160 0.200  0.669 0.009 0.322 .
0.500 | 0.351 0.277 0.372 0.500 . 0.229 0.056 0.715
1.000 | 0.176 0.6x%6  0.13%8 1.000  0.10% 0423 0.169
2,000 | 0.09%  0.89%  0.004 2,000 0039 0929 0.012
2.000 | 0.040 0.95%  0.002 5.000  0.017  0.9%2  0.001
sup$S supl. M
brkSize | HO i Hinf bekSize  HO H1 Hinf
0.000 | 0,960 0.000 0.040 0.000 0952 0.000 0.04%
0.100 | 0877 0.000 0.123 0.100  0.891  0.000 0.106
0.200 0.682  0.001 0.317 0.200 - 0.7HE 8.001  0.285

I 0.500 | 0218 0.00T  0.775 0.500  0.173  0.008  0.819
1.000 0.10%  0.199  0.693 1.000 0.0%6  0.110 0771
2.000 0.057 0925 0.015 2.000 0.045 0925 0.027
5.000 0.016 09583  0.001 5.000 0.013 0957 0.000

ahbt2(HO:avgS) ahbt3iHO:upS)

[ brkSize | 10 H1 Hinf brkSize ~ HO H1 Hinf
0.000 0.950  0.020 0.030 0.000 0.960  0.020  0.020
0.100 | 0.8x3  0.0-44  0.073 0.100  0.877  0.04%  0.075
0.200 0.669 0.124  0.207 | 0.200 0682 0119 0.199
0.500 | 0.229  0.33% 0433 P 0500 0208 0341 0441
OO0 | 0.10% 078 0148 1.000  0.108  0.742 0.150
2,000 § 0.059 0935 0.006 2,000 0.057 0.93%  0.005
2.000 | 0.017  0.979  0.004 5000 0.016  0.9%0  0.004

ahbtH{HO:supl M)
brkSize | HO H1 Hinf
6.000 0.952  0.023  0.025
0.160 | 0.894¢ 0.035 0.071
0.200 | 0.714 0.110 0.176
0.300 | 0173 0.357  0.470
1.O0O | 0.086 0.756  0.158
2,000 | 0.045 0948 0.011
5.000 [ 0.013  0.981  0.006
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Table 5.7: Uniformly Distributed Str. Brk. DGP: A(1/8). 5% cv. T=1000
ahbt avgs
brkSize HO H1 Hinf brkSize ;| HO H1 Hint
0.000 | 0.955 0.019 0.026 0.000 " 0.952 0.001 0.047
0.100 | 0.831 0.070 0.079 0.100 . 0.823  0.007 0.170
0.200 | 0.608 0.169 0.223 0.200  0.514 0011 0475
0500 [ 0.241 0475 0.284 0.500  0.146 0.176  0.678
1000 | 0.121 0.%66 0.013 1.000 " 0.071 0.790 0.139
2,000 | 0.045 0951 0.004 2.000 0 0.025 0973 0.002
3.000 | 0.022 0976 0.002 5.000 | 0.010 0996 0.000
supS supl.M
brkSize | HO H1 Hinf brkSize = HO H1 Hinf
0.000 0.955  0.001  0.044 0.000 7 0.959  0.000 0.0
0.100 | 0.820  0.000 0.1%0 0.100 0.832  0.001 0.167
0.200 | 0.501 0.002  0.194 0.200 0.516  0.001 0183
0.500 1 0.13% 0,037 0.825 0500 0112 0022 0.566
1.000 0.070  0.631  0.299 1.000 ' 0.053 0512 0,405
2.000 0.025 0972 0.003 f 2.000 0.01%  01.97Y  0.003
2000 1 0.010 0990  0.000 | 2.000 0.00% 0991  0.001
ahbt2(HO:avgS) ahbt3{HU:supSi
[ brkSize T HO H1 Hinf | [ brkSize ~ HO H1 Hinf
F0.000 0.952° 0.023  0.025 0.000 0.955  0.021  0.02¢
‘ 0.100 | 0.823 0.071 0.106 0.100 0.820  0.0741 0.106
0.200 [ 0501 0201 0.2x2 0.200 0504 0213 0.253
0.500 | 0.146 0539 0.315 0.500 0138 058 0314
1.000 | 0.071 0913 0.016 1.000 0.070 0914 0.016
2,000 | 0.025 0.970  0.005 2,000 ¢ 0.025 0972 0.003
2.000 | 0.010 0.9%9  0.001 5.000 " 0.010 0939 0.001
ahbt-iHO:sup L M)
brkSize [ HO H1 Hinf
0.000 | 0.959 0.019 0.022
0.100 | 0.832 0.076 0.092
0.200 | 0.516  0.211 0.273
0.500 | 0.112 0563 0.325
1.000 | 0.053 0.92¢ 0.023
2,000 | 0.0  0.977  0.005
5.000 0.00%  0.991 0.001

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.8: Uniformly Distributed Interior Brk: A(1/3). 5% cv. T=200

ahbt
brkSize HO H1 Hinf
0.000 | 0.947 0.008 0.045
0.100 | 0.946 0.010 0.044
0.200 | 0.83%  0.030 0.082
0.500 | 0.710 0.063 0.222
1.000 0498 0.209  0.293
2.000 | 0.300 0574 0.126
5.000 | 0.185  0.813  0.002
sSups
brkSize Ho HI Hinf
0.000 | 0.956 0.060 0.0-14
0.100 0.94%  0.000  0.052
0.200 0.910  0.000 0.090
0.500 0.620 0.000 0.3%0
1.000 0.2%6  0.015  0.699
2.000 0.110  0.212  0.678
5.000 0.052  0.624  0.324
ahbt2HO:avgS)
brkSize Ho H1 Hinf
0.000 0947 0.012  0.041
0.100 0.950  0.007 0.043
0.200 0.900  0.023  0.077
0.500 0.6 0.07%  0.27%
1.600 0294 0.2%6  6.420
2.000 0123 0.722 0.15
5.000 0.059 0.939 0.002
ahbt4(HO:supL M)
brkSize | HO 1 Hinf
0.000 | 0.963 0.00%8 0.029
0.100 | 0.960 0.012 0.0258
0.200 | 0.923 0.023  0.05¢
0.500 | 0.658 0.083 0.259
1.000 | 0.276  0.301 0.423
2,000 | 0.125  0.722  0.153
5.000 [ 0.056 0.943 0.001

90

avgS
brkSize | HO H1 Hinf !
0.000 | 0.947 0.000 0.053 .
0.100 | 0.950 0.000 0.050 °
0.200  0.900 0.003 0.097 -
0.500 | 0.644 0.009 0.347
1000 1 0.294 0.061 0.645
2000 0.123 0297 0.350
5000 0 0.059 0455  0.486
suplL.M
brkSize . HO  HI _ Hinf
0.000 0,963 0.000 0.037
0.100 0.960  0.000  0.040
0.200 0.923  0.000 0.077
0.500  0.65%  0.000  0.342
LOO0  0.276  0.005 0.719
2.000 0.125  0.095 0.7%0
5000 0.056 0388 0.556
ahbt3(HO:supS)
(hrkSize  HO 01 Hinf
0.000  0.956  0.009 0.035
0.100 0945 0.011  0.041
0.200  0.910  0.02¢  0.066
0.500  0.620 0.094  0.2%6
100D 0286 0.296  0.41¥
2000 - 0.110 0731 0.156 ;
5000 0.052  0.947  0.001
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Table 5.9: Uniformliy Distributed Interior Brk: A(i/8). 3% cv. T=300

ahbt avgs
brkSize | HO H1 Hinf brkSize | HO H1 Hinf
0.000 | 0.936 0.019 0.045 0.000 ' 0.940 0.000 0.060
0.100 | 0.926 0.024 0.050 0.100 0933 0.001 0.066
0.200 | 0.838 0.047 0.095 0.200  0.857 0.005 0.13%
0.500 | 0.543 0.161 0.293 0.500 ' 0.3%%  0.049  0.563
1.000 | 0.339 0.192 0.169 1.000 . 0.167 0.253  0.580
2,000 | 0.169 0.813 0.01% 2.000 0.066 0.537  0.397
5.000 | 0.12% 0871 0.001 5.000 - 0.042 0427 0.531
supS supl.M
MbekSize | HO H1 Hinf brkSize : HO H1 Hinf
0.000 0.942 0,001 0.057 0.000 0.9 0.000 0.056
0.100 0.926 0.000 0.071 0.100 0.935  0.000  0.065
0.200 0.%37  0.000 0.163 0.200 0.852  0.000 0.14%
0.500 0.35%  0.004  0.63% 0.500 0.369  0.003  0.628
1.000 0.149 0078 0.773 1.000 0142 0,033 0.825
2.000 0.057 0480 0.463 2.000 0.059  0.336  0.605
2000 | 0035 0657 0.30% I 3.000 0037 0015 0548
ahbt2(HO:avgS) ahbt3(HO:=upS)
bekSize | HO HI Hinf bekSize  HO Ht Hiof
0.000 0.94) 0.016 0.0-44 0.000 0.912 0016 0.012
0.100 0.933  0.025 0.042 0.100 0.926  0.029  0.045
0.200 0.857  0.049  0.091 0.200 0.837  0.055  0.10%
0.500 0388 0237 0375 0.500 0.35%  0.24% 1).394
1.000 0.167  0.622  0.211 1.000 0.1.49  0.639 0.212
2.000 0.066 0912 0.022 2.000 0.057  0.920 0.023
2.000 0.042 0957 0.001 5.000 0.035 0963  0.002
ahbt4{HO:supL M
brkSize | HO Hl Hinf
0.000 0.941  0.021  0.035
0.100 | 0935 0.019 0.046
0.200 | 0.852 0.048 0.100
0.500 | 0.369 0.24%  0.3%3
1.000 | 0.142 0O.642 0.216
2,000 1 0.059 0919 0.022
5.000 | 0.037 0962 0.001
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Table 5.10: Uniformly Distributed Interior Brk: A{1/8). 5% cv. T=1000

ahbt avgS
brkSize | HO H1 Hinf brkSize | HO HI Hinf
0.000 | 0.946 0.020 0.034 0.000 10.959 0.001 0.040
0.100 | 0.907 0.035 0.058 0.100 J 0.912  0.004 0.034
0.200 | 0.749 0.090 0.161 0.200 | 0.704 0.00% 0.28%
0.500 | 0411 0334 0.252 0.500 : 0.238  0.136  0.626
1.000 [ 0.240  0.697 0.063 1000 | 0.109 0.129 0.162
2,000 1 0.133  0.865 0.002 2000 ; 0.055 0513 0.432
5.000 | 0.084 0916 0.000 5.000 1 0.022  0.437  0.541
supS supl.M
bekSize | HO HI Hinf ["brkSize | HO 1 Hinf
0.000 0.949  0.000 0.051 0.000 © 0.955 0.000 0.045
0.100 0.907  0.000 0.093 0.100  0.922  0.000 0.07%
0.200 0.6x5  0.001 0.31¢ 0.200  0.699 0.000 0.301
0.500 0.212  0.018  0.770 0.500 0217 0.004 0779
1.000 0.090  0.265  0.645 1.000 ; 0.096 0.133 0.771
2.000 0.045  0.619  0.336 2000 0042 04426 0.532
2.000 0.016  0.729  0.25) 5.000 0.021  0.135 0541
ahbt2{HO:avgS) ahbt3{ HO:supS)
brkSize | HO 1 Hinf brkSize =~ HO H1 tinf
4.000 0.959  0.017  0.024 0.000 J.9149  0.020  0.031
0.100 0.912  0.031 0057 0.100 0.907  0.032 0.061
0.200 | 0.704 0.165 0.191 0.200  0.685  0.1!'5  0.200
0.500 0.23% 0447 0.315 0.500 0.212  0.46t1  0.321
1.000 0.109  0.819Y 0.072 L.O00 - 0.090 0.x3%  0.072
2.000 0.055 0.941  0.001 2000 ; 0.045 0953 0.002
2.000 0.022 0977 0.001 3.000 ©0.016  0.9x3  0.001
ahbt-4{HO:supL M)

brkSize | HO H: Hinf

0.000 0.955 0.019 0.026

0.100 | 0.922 0.029 0.049

0.200 | 0.699 0.10%  0.193

0.500 | 0.217  0.462  0.321

1.000 | 0.096 0.834 0.070

2,000 | 0.042 0955 0.003

5.000 | 0.021 0978  0.001
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Table 5.11: lid) DGP: A(1/8). 5% cv. T=200

93

ahbt avgS

d HO H1 Hinf d " Ho Hl Hinf
0.000 | 0.964 0.002 0.034 0.000 | 0.957 0.000 0.043°
0.250 | 0.600 0.045 0.355 0.250 | 0.155 0.009 0.336
0.500 | 0.291 0.077 0.632 0.500 f 0.066  0.035 0.8%99
0.750 ] 0.160 0.065 0.77) 0.750 " 0.006 0.045 0.949
1.000 | 0.093 0.061 0.346 1.000 | 0.000 0.051 0.949

sup$S supLM

d HO H1 Hinf d Ho H1 Hinf
0.000 | 0.959  0.000 0.041 0.000 ' 0.962  0.000 0.03%8
0.250 | 0400 0.001 0.599 0.250 : 0.362  0.001 0.637
0.500 | 0.051 0.016  0.933 0.500 ; 0.029 0.012 0.959
(G.750 | 0.001  0.038  0.95%8 0.750 i 0.002 0.031 0.967
1.000 | 0.001 0.062 0937 1.000  0.060 0.039 0.941

ahbt2(H0:avgS) ahbt3(HO:supS)

d HO Hi Hinf d HO H1 Hinf
0.000 | 0.957  0.008  0.035 0.000 ! 0.959  0.009 0.032
0.250 | 0.455  0.071 0474 0.250 © 0100  0.075  0.52)
0.500 | 0.066  0.091  0.x40 0.500  0.051 0.095  0.851
0.750 | .006 0076 0.91x 0.750  0.004+ 0,076 0.920
1.000 | 0.000 0.062  0.93% 1.000  0.001  0.062 0937

ahbt-{(HO:sup. M)

d Ho H1 Hinf
0.000 | 0.962 0.012 0.026
0.250 | 0.362  0.087  0.551
0.500 | 0.029 0.097 0.571
0.750 | 0.002 0.076  0.922

_1.000 ! 0.000  0.062  0.93%
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Table 5.12: I(d) DGP: A(1/8). 5% cv. T=500
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ahbt avgS
d HO H1 Hinf d + HO H1 Hinf
0.000 | 0.93% 0.018 0.044 0.000 : 0.943 0.000 0.057 -
0.250 | 0.482  0.085 0.433 0.250 ; 0.239  0.023 0.73%
0.500 ; 0.202 0.099 0.699 0.500 : 0.009 0.034 0.957
0.750 §{ 0.102  0.056 0.842 0.750 ' 0.000 0.042  0.95%8
1.000 | 0.057 0.039 0.904 1.000 1 0.000 0.036  0.964
supS supL M
d HO H1 Hinf d  Ho H1 Hinf
0.000 | 0.945 0.000 0.955 0.000 | 0.959 0.060 0.041
0.250 | 0.163  0.002 0.335 0.230 ' 0.151  0.003  0.846
0.500 | 0.003 0.013 0.984 0.500 | 0.000 0.006 0.994
0.750 | 0.000 0.028 0.972 0.750 0.000 0.025 0.975
1.000 | 0.000 0.036  0.96¢ 1.000 © 0.000 0.037 0.963
ahbt2(HO:avgS) ahbt3*HO:supSi
d HO H1 Hinf d HoO HI1 Hinf
0.000 t 0.943  0.020 0.037 0.000 0.915 0.019 0.036
0.250 | 0.239 0.126  0.635 0.250 0.163  0.142  0.695
0.500 ; 0.009 0O.116  0.875 0.500  0.003 0.116  §.8x1
0.750 | 0.000 0.060 0.940 0.750  0.000 0.060 0.910
1.000 | 0.000 0.041  0.939 L.O0O  0.000  0.041  0.959
ahbtH{HO:supl. M
[ d HO H1 Hinf |
0.000 | 0,959 0.019 0.022
0.250 { 0.151  0.146 0.703
0.500 | 0.000 0.116 0.xx4
0.750 | 0.000 0.060 0.910
1.000 | 0.000 0.04  0.959



Table 5.13: I(d) DGP: A(1/8), 5% ev. T=1000

ahbt avgS

d HO H1 Hinf d | HO HI Hinf -
0.000 { 0.936 0.022 0.042 0.000 | 0.942 0.001 0.057

0.250 | 0.435 O.111  0.454 0.250 , 0.158 0.036  0.8306 :
0.500 | 0.121 0.098 0.781 0.500 } 0.001  0.040 0.959
0.750 | 0.069 0.065 0.866 0.750 | 0.000 0.054 0.946
1.000 | 0.04% 0.041 0.915 1.000 | 0.000 0.042 0.958

supS supL M
d HO H1 Hinf d . HO H1 Hinf
0.000 | 0.948  0.001 0.051 0.000 @ 0.951 0.000 0.019
0.250 | 0.088 0.004 0.90% 0.250 : 0.075 0.002  0.923
0.500 | 0.000 0.011 0.9%6 0.500 | 0.000 0.00%  0.992
0.750 | 0.000 0.037 0.963 0.750  0.000 0.032  0.968
1.000 | 0.000 0.03% 0.962 1.000 © 06.000 0.0+8 0.956
ahbt2(H0:avgS) ahbt3(HO:supS)

bod HO H1 Hinf d . HO H1 Hinf
i 0.000 [ 0.942  0.019 0.039 0.000 - 0.94%  0.01%  0.031
0.250 | 0.15%  0.152  0.690 G.250 . 0.08%  0.161 (.TN
l 0.500 | 0.001 0.106  0.893 0.500 © 40.000  0.106  0.894
0.750 { 0.000 0.072 0928 0.750  0.000 0072 0928
! 1.000 | 0.000 0.043  0.957 | 1.000__0.000 0 043 0.957

ahbtHHO:supL M)

d HO Hl Hinf
0.000 { 0.951  0.015  0.034
0.250 | 0.075  0.165  0.760
0.500 | 0.000 0.106  0.894
0.750 | 0.000  0.072  0.928
1.000 | 0.000  0.043  0.957
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Chapter 6

Fixed-Income Returns and
Yields: Long Memory or
Structural Instability?

Unlike equity returns. many fixed-income return measures appear to display considerable long
memory. This holds particularly strongly for shorter-maturity Treasury securities in the US.
In a number of recent papers, Granger has argned that long memory in returns may only reflect
infrequent structural breaks. He finds the case for long memory in volatility much stronger.
Parke (1999 develops a model that generates long memory through a type of structural shift.
In this paper. we show that the extent of long memory depends crucially on whether gros
or excess returns are under consideration and we provide a simple demonstration of why this
distinction is ~o important. We also explore the impact of structural instability on tests for
long memory using a version of the supl M test deseloped by Andrews (19935, Briefly. we
find evidence of lung memory in gross returns, vields and term-premia even after accounting

for structural shifts in a number of different ways.

6.1 Introduction

Finance research on the Treasury security market is extensive, and there are many papers that
characterize different features of the distribution of Treasury security returns and volatility.
This paper extends the existing research by documenting the long memory properties of Trea-

sury security returns and by presenting some evidence on the sources of the long memory. Our
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research is prompted by the fact that bill and bond returns display a leading characteristic of
long memory: their autocorrelations are large. but die out very slowly (especially compared
to equity return autocurrelations). This autocorrelation property is an important feature of
fractionally-differenced time-series models. analyzed by Granger (19R80). Hosking (1981}, and
Geweke and Porter-Hudak (1983).

Perhaps the most important question to address is why finance researchers should take
an interest in long-memory models, particularly since applicatious of these models to equity
data have found little credible evidence of long memory. One direct answer is that unlike the
equity literature. we find strong evidence of long memory in all of our data series except excess
returns. This empirical regularity is iinportant because Maundelbrot (1971) shows that there
may be arbitrage opportunities in asset markets with long memory.

Financial risk management systems typically use time-series representations of return be-
havior. but long memory does not appear to be incorporated into these products.'  This
assumption may be a reasonable approximation for short-horizon risk management, but ne-
glected long-memory components in return and volatility phenomena may lead to inaccuracies
in modeling and managing longer-horizon risks. The consequences of using an inappropri-
ate time series model in this setting are not well known. but probably merit study for some.
longer-horizon risk management problems.

The unique long-horizon forecasting properties of long-memors models twhich we discuss
in Section 6.2) make them interesting to study, especially given the current interest in re-
turn predictability, particularly at long horizons. Andersson {19981 shows that ignoring long
mermory in forecasting exercises when it exists is worse than imposing long memory when it
does not exist. Long memory is also important for pricing models. Backus and Zin (1993,
Bollerslev and Mikkelsen (1996). and Comte and Renault (1996} are a few examples of papers
which explore the consequences of long memory for pricing bonds. equity options. and interest
rates options.

We document the long memory properties of Treasury Bill and Bond gross and excess
holding period returns. yvields and the term-premium. To do this. we test for long memory

using a test statistic developed by Kwiatkowski. Phillips. Schmidt, and Shin (1992). We show

! Riskmetrics is one example. The documentation provided for the software appears to indicate clearly that
ARIMA(p. d. q) models with d set either to zero or to one are standard in this risk management product.
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that weekly gross holding period returns on Treasury Bills display strong evidence of long
memory. even after accounting for short-term dependence in the series. Treasury Bond holding
period returns. on the other hand. do not appear to have long memory. Interestingly. we find
that excess returns on longer-maturity bills and bonds show no evidence of long memory. We
also find a strong degree of persistence in yields and term-premium across securities.

What produces long memory”? Recent work makes it clear that structural instability may
produce (spurious) evidence of long memory. Lobato and Savin (199%) warn empirical in-
vestigators about the possibility that structural instability may lead to misinterpretation of
long memory evidence. Giranger and Hyung {1999) show that a linear process with structural
breaks can mimic long memory series and present simulation evidence that long memory in ab-
solute S&P 500 returns is more likely due to structural breaks than an underlying [(di process.
Hightower and Parke (1999) demonstrate that certain structural stability tests and particular
tests for long memory are related to one another: each is a specific function of a common
statistic based on the cumulative sums of the error process. This implies there is ambiguity
in the interpretation of tests for long memory: evidence of an [{di process mav actually be
structural instability in disguise. For these reasons and because US, debt markets have expe-
rienced change over our sample period. we report a detailed analysis of how particular sample
partitions (corresponding to specific market changes) atfect the evidence for long memory. We
also use the sup LM test of Andrews (19930 and the sequential break test of Bai and Perron
(20011 to identify likely structural breaks in the time series.

Our empirical work uses a sample of hand-collected weekly holding period returns on seven
(nearly constant-maturity] Treasury bills and bouds covering the July 1962 May 1996 period.
Section 6.3 of the paper reports further details on the sample

lu the next section. we discuss the properties of fractionally-differenced time series. their
potential use in modeling expected returus. and a test for long memory. Section 6.3 describes
our data. Section 6.1 reports our empirical results for the long-term memory test and analyzes
the structural stability issues A final section summarizes the issues considered in the paper

and discusses the implications of our findings.

9x
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6.2 Long-Memory Processes

6.2.1 Introduction to Long Memory

Normally. only integer powers of d are considered in ARIMA(p.d.q) models, but there is no
mathematical or statistical requirement that d take on only integer values (e.g.. d=1 yields a
first-difference model). In a fractionally-differenced model. d can take on non-integer values
and the resuiting time seriex can exhibit some particularly interesting dependencies. Granger
and Joyeux (19%0) and Hosking (1981) show that extending the lag operator to non-integer
powers of d results in a well-defined time series that is fractionally integrated of order d.° The

differencing operator may be written

d - 3 d & s 1e
(1 -1 _kz-;)i—l) (k)[. 1610

leading to the following representation of a time series where p = ¢ = O
~ .
Uik —dh c -
(1= Lity, :ZIT— 16.2)

Here, [ is the usual gamma function,
In his excellent survey paper, Baillie (1996} reviews a number of ditferent long-memory

models. Oue simple model is an ARFIMA (0.4.0) process given by
(L= Litiye — i =« 16.3)

This model is studied in Granger (19501, Granger and Joyeux (19801, and Hosking (19817,
Their work shows than when < . the series has finite vartance, but for d = 5. the series has
infinite variance. The time series is stationary and invertible when —.5 < d < 5. Ford = 5,
standard Box-Jenkins techniques will indicate that differencing is required and provided that
d < 1. differencing wiil produce a series whose spectrum is zero at zero frequency.  This

heavily-used model is a special case of an ARFIMA (p.d.q) process given by
DLl = L)y = p) = O(Lje, (6.4

where p=q=0.

2 See also Robinson (1973) for early analysis of long-memorny models.
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Fractionally-differenced time-series models have very interesting long-run forecasting prop-
erties. A fractional white noise series yo ~ I(d) may be represented as an M.\( x) process
where the moving average coefficients decline slowly following the form b, ~ .~l:,"l where 4
is a constant. A stationary ARMA(p.¢) with infinite p and q will have coefficients that de-
cline at least exponentially: b, ~ A6/, One important implication of these stark differences
in coeflicient decay rates is that a fractionally-differenced model may provide better long-run
forecasts from a very simple model compared to ARMA(p. ¢) models where p and g are large.’

In principal. parameterizations of both finite-order ARM A\ and fractionally-differenced time
series can produce dependence in a time series. The rate at which past information ceases to
be useful in forecasting future values differs importantly across these models. .\ comparison
of the autocorrelograms for a fractionally-differenced time series with d=0.1 and an AR(1}
process with p=0.5 provide a nice illustration. The first autocorrelation for each series is
nearly identical (0.5 vs. 0.61 but the decay rates are quite different. The autocorrelations
decline very slowly for the fractionally-differenced series. but fall quite rapidly to zero for the
AR} process. This is an example of why fractionally -differenced time series display greater
persistenice than AR {or ARM.A\ ) processes. and why they may be interesting in research on

debt instrument vield and return distributions.?

6.2.2 Models of Persistent Expected Returns

Existing time series models of expected returns can be cast in terms of ARFIMA models. To

~ee this, begin with the following expected return model:
Re=FE_ (R + ¢, (6.5

where £, is the asset return at time t. £ is the expectations operator. and ¢, is a mean zero.

constant variance error term with the property (e, ¢,_;) = 0 for all j. [f the expected return

3 For further discussion of the autocorrelation. autocovariance, and general forecasting properties of long-
memaory models, see Baillie (1996)

¥ In fact, Lo (1991) shows that a fractionally-differenced model can reproduce the general pattern of variance
ratio results reported in the equity literature. In particular. he shows that a combination of an AR(1} and
fractionally-ditferenced model with d=0.25 will produce variance ratios above one at short horizons and below
one at longer horizons. This suggests that fractionally-differenced models may have special importance in
ongoing empirical investigations of long-range dependence in capital markets. Lo's own results suggest that
there is little evidence of long-term memaory in .5, equity index returns once short-cun dependencies have
been accounted for in tests for long-memory.
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is a constant (u}. we may write

R —pu=e (6.6)

This. together with assumptions about the properties of the ¢, series, yields the common
random walk model of asset prices. a special case of ARFIM.A where p=0. d=1. and ¢=0.
More generally. varving assumptions about the expected return process can produce par-

ticular special cases of an ARIMA\(p.d. ¢) model whose general form is
Ll = Ly Ry = Ot L)e, 6.7

where all terms are as defined in the previous section. Kan and Lee (1991} show that the
constant expected return model obtains when d=0 in (6.5). Hence, finding a nonzero value
of d implies the presence of long-memory components in asset returns.  This implies lagged
returns will be useful in forecasting long-horizon future returns (ie.. there is persistence in

asset returnsi.

6.2.3 Testing for Long Memory

Kwiatkowski. Phillips. Schinidt, and Shin (19923 develop a test for (01 behavior which is
consistent against an lid) alternative and can be helpful in distinguishing long memory from
short memory. The null hy pothesis of their test is that a time series is [i0i. but under the
alternative hypothesis, the time series displays [(d) behavior (with d < 1. Lee and Schimidt
1996 provide further analysis of this approach 1o testing for long-memory effects. Their
Monte Carlo evidence suggests that the KPSS test has power comparable to Lo’s robust R/~
statistic in distinguishing 110} from l{d) behavior.

The first step in calculating the KPSS test statistic is to form the partial sum (5p) of the

residuals from the demeaned series.” The test statistic is given by

Ny = ) i Z ."f/s"r( th {6.%)

s=1

where the denominator is the autocorrelation-consistent variance estimator defined by

r r r
40O = 7'_1Z(fﬁ-‘."f’lZu‘(sJ) Z €r€p_y 16.9}
t=1 s=1| t=s+!

3 There is another version of their test. n-. which is constructed in the same way except that the residuals
are derived from a regression that involves a time trend as well as intercept term.
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This robust variance estimator is based on Phillips (1987). who demonstrates its consistency
under certain conditions and Newey and West (1987). who suggested the weighting scheme
w(s. € =1 = j/(£+ 1) to guarantee that the variance estimate is positive semi-definite.

Lo (1991} shows that short-range dependence (well documented in equity prices by Lo and
MacKinlay (1988). and Conrad and Kaul (1989)) may compromise inferences about the pres.
ence of long-range dependence. Embedded in the KPSS test is a somewhat different view of
long-range dependence than is apparent in the long-horizon equity returns literature. Aside
from sume technical conditions. the null hypothesis of no long-range dependence eliminates in-
finite variance marginal distributions and encompasses a strong-mixing condition that requires
higher-order autocorrelations to fall in size as the lag length increases. This means that the
series of autocorrelations displayed by a time series under the null hypothesis decays rapidly.
Included in the null hypothesis, then. are all finite-order ARM.A models. The null hypothesis
of no lung-range dependence includes well-known models of return dependence (~ee Campbell
et al. (1997) for detailsi. Put another way. the null hypothesis in the KPSS test excludes
return behavior that is quite different from the autocorrelation series commonly reported in
earlier work.

Since the optimal number of autocovariances is not known ex ante, we compute ij,, u using
a number of different autocovariances, f. The tradeofl is that using too few autocovariances
produces an inadequate bias correction. but using too many leads to low power since higher-

order autocovariances are more imprecisely estimated.

6.3 Data

[n the subsequent empirical analysis. we analyze weekly gross and « reess holding pe riod r turns
on U.S. Treasury securities. The basic return data set contains weekly holding period returns
on vne-, three-. six-. and 12-month Treasury Bills and three-. five-. and 10-vear Treasury Bonds
for the July 1962 through May 1996 period.®

Weekly holding period returns were calculated by taking the log difference of this Wednes-

day’s bid price and last Wednesday’s ask price and adding in the percentage return associated

¢ The original weekly return data was collected by Gautam Kaul and very graciously provided to us. \We
are grateful to Paisan Limratanamongkol who updated all the data series for us.
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with accrued interest. The bid and ask prices used to calculate the weekly return were for the
same security. However. the security used in the computations was frequently changed so as to
maintain a fairly constant maturity return series. In no case. though. were prices on different
securities used to make return computations. The basic Treasury bill and bond price data is
from the Wall Street Journal.”

We computed six excess return measures: the weekly holding period return on 10-year
bonds (and five-year., three-year., 12-month. six-month. and three-month) less the weekly
holding period return on vne-month bonds. This gives the extra return earned by holding a

longer-maturity Treasury debt instrument vs. short-maturity Treasury debt.

6.4 Empirical Results

6.4.1 Full Sample Results

We use the KPSS statistic to test for long memory. The results of the KPSS test on the full
sample returns, excess returns, vields, and term-premia are reported in the panels of Table 6.1
labeled =Full Sample™.

For all of the return series except the weekly returns on three-, five- and 10-vear Treasury
bonds. the null hypothesis of stationarity is strongly rejected in favor of an l{di process. The
K PSS test statisties clearly tmply that weekly gross fixed income holding period returns display
long memory. The evidence of persistence is even stronger in the yields and terin-premia. where
almost all of the series reject for all choices of autocorrelation truncation parameter. . The
exception is the [2-month over 3-month term-premium, which fails to reject stationarity when
t < 0.

For weekly ercess holding period returns. the KPSS values show very little evidence of
long-term dependence. This stands in sharp contrast to our just-noted findings about long
memory in gross holding period returns. It suggests that empirical asset pricing work that

focuses on excess returns can safely ignore the implications of neglected long memory.

" One motivation for using individual security data is to avoid aggregation of multiple security returns where
possible. Granger (1980) provides an analysis of conditions under which aggregation can produce long memory.
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6.4.2 Sample Selection and Structural Stability

While our time series samples of holding period returns are fairly long. we need to address
a fundamental issue in all empirical studies of long-memory processes. With a stable under-
lving structure, high frequency effects may be found by sampling very frequently. but over a
relatively short time period (i.e.. sample every |5 seconds for three business days). The long-
meinory phenomenon we are interested in may be measured accurately only in long samples.
i.e.. samples which extend over many realizations of the long-memory process. This is perhaps
best achieved with samples that cover many years {say. 200 yvears). but where the process is
not sampled with high frequency. What is needed for long- memory empirical studies is a long
sample realization of the process (i.e.. 200 years). particularly one that is not sampled so often
that short-run dependencies dominate the sample properties of the data.

The ditliculty here is that the underlying structures of debt markets, instruments, and
trading institutions and practices have not been stable over periods of even 50 years, let alone
100 to 200 vears.® As Lobato and Savin {1998 suggest, this instability may lead to spurious
evidence of long memory.? In our setting. the task is to provide the longest possible sample
while recognizing that extending the length of the sample increases the probability of stenetural
instability. 1Y

Lobato and Savin (199%) assess the fragility of evidence for long memory by splitting their
sample of daily returns and squared returns into sub-samples. They recompute their tests for,
and measures of, long memory for each sub-sample. and then comparing inferences from the

! The analysis in Hightower and Parke 11999) indicates

whole sample and the sub-samples.!
that structural shift tests and the KPSS test for I(d} (versus [{0y; behavior are both functions

of the same term: the ratio of the partial sums of the series to a consistent variance estimate for

* One example is the Treasury Fed Accord of 1953 that ended the Fed's explicit policy of managing [reasury
borrowing costs. A more recent example is the shift in Fed operating procedures in October 1979,

? Indeed, Diebold (1936) argues that evidence of integrated in variance GARCH. a nonstationary conditional
variance model, is really an indication of underlyving instability. Lastrapes (1989) provides considerable evidence
in favor of Diebold’s interpretation.

10 [deally. instability tests such as those developed in Hansen (1992) might be used to resolve the instability
issue empirically. Unfortunately. these tests are not available for our application. Hidalgo and Robinson (1996)
have studied the issue of structural change in the mean with long memory for the case where the time series
are Gaussian. There is substantial evidence rejecting Gaussianity for financial market return series. so this test
does not seem to be particularly appropriate for the problem we are studving here.

' There is evidence of sub-sample instability from the equity market mean-revemsion literature. In particular,
see Kim and Nelson (1998) and the references therein.
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that series. One interpretation of their theoretical results is that ~large™ KPSS test statistics
can be interpreted as evidence of a structural shift. This implies it is particularly important
to assess the robustness of the results reported for the full samples to changes in the sample
endpoints.

We explore the fragility of long memory evidence by comparing inferences acruss sub-
samples and our full sample. As a crude check on our earlier findings. we recalculated the
KPSS test statistics using these sample breakpoints and checked the stability of the long-
range dependence test statistics across the early and later samples. In this way, we hope to
provide sume initial evidence on the impact of potential structural instability on our inferences

about long memory.

6.4.3 First-Pass Stability Analysis

As a first-pass stability analysis we split our sample into two parts. More specifically. because
of the shift in Federal Reserve System operating procedures in early October 1979, we ~plit
our U.S. Treasury bill and bond data at Septesuber 1979, The various panels of Tables 6.1 6.1
contain full sample and sub-sample estitnates of the KPSS test statisties for all the returns for
which we reported earlier. For each group. (returns, excess returns, vields. and term-premium,
the first panel is the KPSS test statistic for the full sample period. The second (third) panel
i> the KPSS test statistic for the finst (second} sub-sample.

Analysis of the U.S. Treasury sub-sample results reveals some very interesting regularities.
First. the evidence for long memory from the KPSS tests is pervasive in returns. yvields. and
term-premia across the two sub-samples. The only exceptions are longer maturity returns in
the full and pre-October 1979 period and the 10-year bond for full and sub-samples. Second.
there is very little evidence of persistence in excess returns.!* These findings are robust over

a wide choice of bandwidth choices to account for short-run dynamies.

2w . L .
'?2 We found very similar behavior in the monthly return data. Our results on excess returns were quite
robust across the sub-samples. We find no evidence of long memory in excess returns in either sub-sample
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6.4.4 Finding Break Points with SupLM Tests

The relationship between long memory and structural change has received an increasing
amount or attention in recent years. Somne researchers (Diebold and [noue (2001) and Granger
and Hyung (1999)) see long memory as an artifact of processes that exhibit certain types
of structural change over time. Others {Parke {1999) and Taqqu. Willinger. and Sherman
(1997)) propuse models where many structural breaks that last for random durations give rise
to time series properties that are associated with long memory (slowly decaying autocorrela-
tions). Taken together. these lines of research point to a blurring of the differences between
long memory and structural change.

In empirical studies, whether a process is deemed to be long memory or a break may come
down to what types of tests are perforined on the data. Hightower and Parke {19990 clarify
this point by showing that the commonly perforined KPSS test for stationarity. which has
also shown to be a consistent test against long memory (Lee and Schimidti. is an algebraic
special case of the Andrews and Ploberger (19945 tests for structural change. As these tests
have nearly identical empirical properties, the modeling choice between long memory and
structural change has typically been determined by the test run.

Andrews (1993} suggests a supremuin test for a one-tirue structural change with an un-
known break point as a way to account for the criticism thai researchers may ~eyeball™ the
most likely point for a break before running a typical test. Given a time series y,. residuals

defined in the usual manner as ¢, = y — y. and defining 5, = ¥/ , ¢ to be the cumulative

— T
sutn of residuals, the LM test for a one-time change in mean at a point 7 = (0. 1) can be shown

to be

Ner)

I 16.10)
Tl = 7)set )

LMpmy =Tt

where s(f) is given by equation (6.9). If w(s.#) is taken to be the Bartlett kernel. s?{6) is
identical to the denominator of the KPSS statistic. The Andrews supL M test is then simply
given by sup [ -‘{lr(fr) where [l is bounded away from 0 and [.
rE
The relationship between tests of stationarity and tests of structural change can be seen by
a comparison of {6.%) and (6.10). The KPSS test for stationarity can be viewed as an average

of the LMpr(x)’s weighted by (1 — 7). Hightower and Parke (1999) show that these two tests

{as well as the Andrews and Ploberger avgL M and erpl M testsi have nearly identical power
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against many common alternatives including structural change. unit roots and long memory.
In this context. the supL M test can provide insight into candidate breakpoints that may be
driving rejections of short memory. if indeed these rejections are driven by a structural shift
in the sample.

This idea has been expanded on by Bai and Perron (2001} who show that multiple break-
points may be estimated by using a sequential procedure. We use their procedure to see if

instability in monetary variables and inflation can explain the persistence seen above.

6.4.5 Splitting Using M2

One idea is that instability in the treasury debt-market securities is driven by instability in
an underlying monetary aggregate. such as M2. To test this theory. we sequentially estimate
break points in M2 for our sample period using the Bai-Perron procedure. We then use these
break points to split our return and yield (as well as our excess return and terim-premium)
series and retest the resultant subsamples using the KPSS test. The idea is that if the insta-
bility /persistence is coming from monetary variables, the evidence for long memory will be
significantly decreased in the debt securities once we take in into account.

The results are shown in Tables 6.5 6.8, We identify four sub-samples in M2 and test within
them accordingly. The conclusions froo: the naive split retnain unchanged except. perhaps in
the second subsample. However, this sub-sample is quite short (T8 observations: ~o it is wise

not to put too much weight on this reversal.

6.4.6 Splitting Using Inflation

Next. we consider some of the facts from our initial exercise. We find persistence in returns but
not excess returns as well as in vields and term-premium. In the term-premium. the evidence
increases with the maturity differential. One explanation for these facts could be an underiving
instability in inflation driving the persistence in the debt-market securities through the Fisher
equation. If nominal rates are equal to the real rate plus expected inflation. we would expect

tu see just this type of behavior.!?

13 Recall that expected inflation is over the life of the bond and therefore different for bonds of ditffering
maturity
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Tables 6.9-6.12 presents the results from sequentially splitting samples using inflation.
The procedure picks a three-break model with breaks at 1967:5. 1973:1. and 1952:7. These are
shown in Figure 6.3. This selection of break dates closely agrees with those of Bai and Perron
(2001) for the U.S. real interest rate (they use quarterly a 3-month Treasury bill deflated by
the C'PI}.

Once again, this split seems to have very little effect on the persistence in the series.
An interesting feature of this experiment i~ that persistence increases for long-bonds in the
fourth sub-sample. suggesting an increase in instability or long memory since the 1980°s. The
persistence is also confirmed by the results of a test Busetti and Harvey (2001} propose to test
for persistence in the presence of multiple structural breaks. The results of this test. which we
denote (M for Cramer-von Misés, are shown in Table 6.5. Notice that the test does not reject
stationarity for inflation. confirming the results of the Bai-Perron procedure in estimating the

break dates in inflation.

6.4.7 Markov-Switching Models

As a final effort to see if the persistence in treasury securities can be explained by underlying
structural instability we estimate the state probabilities from a two-state Markov-switching
model like that of Hamilton (19901, Figures 6.1 through 6.9 plot the state probabilities for a
sample of our series. [t seetns that the Markov-switching model may provide an explanation of
what we see in our tests for persistence. If evidence of long memory is taken to be equivalent
to evidence of structural instability then the smoothed state probabilities for a two state
switching model are quite interesting. For the series where we tind evidence of long memory
in our previous tables, there seems to be clear evidence of two regimes that switch over time.
Further, the states cluster ~so that there are long runs of each state. On the other hand. for
the series where we don’t find much evidence of long memory (long bond returns and excess
returnsj the states switch back and forth frequently making the identification of runs of a
specific regime diflicult. [n particular. notice that many of the subsamples chosen from the
inflation break dates vverlap regimes from the Markov-switching model.

Table 6.13 contains the results from splitting the samples on the major regime switches from

the two-state Markov-switching model. On the surface they seem to present much the same
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picture as before. However. when viewed in combination with the state probability graphs
it can be seen that the evidence of persistence (embodied in the magnitude of the statistics)
is decreased and many previous strong rejections become marginal ones. This is a result of
the difficulty of choosing “major™ changes in regime. [t appears that the small rejections of
stability within a sub-sample are driven by very brief changes in regime. We calculated the
Ct M statistics using changes in regime as break dates. The results, presented in the second

panel of Table 6.14. agree with the other attempts. The persistence in the series remains.

6.5 Summary and Further Discussion

One aim of this paper is to explore the utility of long memory models for undenstanding
fixed-income market behavior. We can summarize our contributions in the answers to several
questions.

The first question is whether fixed income returns have long memory properties similar
to what has been documented for equity returns. Recall that evidence for long memory in
gross equity returns is thin.'* In this paper, we have shown that weekly, gross holding period
returns on all but long bonds show significant evidence of long memory, particularly ~ince
October 1979, If we focus instead on weekly holding period returns in excess of the return on
the shortest maturity bill, there is no compelling evidence for long memory in fixed income
returns.

The second question is whether the evidence of long memory is due to undertying structural
instability. We have gone to some lengths to establish the sensitivity of these hudings to
structural instability. There is no test available that permits us to unconditionally distinguish
long memory from structural instability. Nonetheless, we have shown that many of our results
on long memory hold in sub-samples. In this respect. we believe that our results have placed a
signiticantly greater burden on researchers who would argue that fixed income research should
ignore long memory because it is probably produced by structural instability. This issue is not
vet settled. but as we indicated in the introduction to the paper. its resolution is important

for a number of research areas in financial economics.

14 Granger (1999) argues that there is no reason to expect long memory in return series. but he accepts long
memory in return volatilities.
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In many ways. our answers to these questions raise an even larger number of questions.
We believe there are some interesting issues to address in exploring the implications of long
memory for fixed income research. One step is to study the impact of long memory on term
structure, bond pricing. and fixed income derivative models. Specifically. it would be useful
to assess the size of any pricing biases and to identify the circumstances where the impact
of ignoring long memory is the most {and least) noticeable. A second issue involves applying
stochastic and deterministic models of long memory to vields and returns and comparing
the forecasting performance of these models with existing. GARCH-related models. A third
question revolves around the implications of long memory for longer-horizon. fixed-income risk
management problems. Perhaps the most fundamental issue remains the economic foundations

for long memory in fixed income markets.
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Table 6.1: KPSS Test: Returns

Full Sample
€ 0 4 R 12

l-month | 22,298 5334 3.069 2178
3month | 12,067 1.420 2306 2.098
6-month | 5,109 2,632  1.932 1.595
12-month { 1.991 1.235  1.034  0.951
3-vear | 0.601  0.405 0.356 0.347
>vear | 0.415 0.310  0.272  0.260
10-vear { 0.171  O0.141 0.129 0.128

First Half of Sample (1 900}

] 0 Xl h 12
l-month | 32,327  7.160 1316 3.061
3month | 13.020 3.399 3561 2641
6-month | 3.8306  3.231 2527 2099

12-month | 1393  0.91x%  0.%23  0.742
3-vear | 0.53Y 0.369  0.348  0.310
J-vear | 0.319 0.232 0.221 0.215
10-vear | 0.122 0.085  0.0%6  ().084

Second Half of Sample (901 17693

¢ 0 1 s 12
l-month | 42,398 10.537  6.107 1366
3-month | 22,157 <362 5380 4093 |
t6-month | X567 1332 3362 2831

i2-month | 2.91% .35 LO51 1472
3-vear 1.396 0.935 0.8l 0.792
year | L1114 0.1 0.725  0.690

l0-year | 0.455 0353 0.341 0.343

1
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Table 6.2: KPSS Test: Excess Returns

Full Sample

¢ 0 4 b 12
Jm-lm | 0.708  0.562 0515 0.493

~ 6m-1m | 0.209 0.154 0.140 0.138
S 12m-1m | 0.231 0.164  0.150 0.150
Jv-Im | 0422 0.293  0.261  0.257
Sy-lm | 0.243  0.136  0.165  0.159
Ly-Im | 0.097 0.079 0.073 0.072

First Half of Sample (1 900)
¢ 0 4 h 12
3m-Lmm | 0278 0.260  0.259  0.24]
6m-1m | 0.151  0.116 0.116  0.11x
I2m-1m | 0.111  0.08%1 0.079 0.076
Jy-Im | 0.106 0.073  0.069 0.06%
dv-1m § 0.105  0.076  0.073  0.071
10y-1m | 0.065 0.045 0.045 0044 |

Second Half of Sample (901 1769)
¢ )] 1 N [2

Im-lm | 0971 0.761  0.703  0.694
bim-lm | 0.215  0.15% 0112 0.1
2m-1m | 0.L4L 0,100 0.092  0.093

Jy-Im D 0.391 0 0.272 0 0241 0.239

Sv-lm | 0412 03210 02580 0.270
[0y-1m [ 0.I%0 0,151 0139 0.139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6.3: KPSS Test:

Full Sample

Yields

f 0 4 8 12
3-month | 30.114  6.073  3.412  2.33R
6-month | 30.950 6.240 3.501 2.419

[2-month | 33.886  6.829 3828 2676
Jvear | 15847 9.226  5.163  3.602
-vear | 52349  10.628 5.941 1140

10-vear | 63.024 [2.66]1 7.06% 1917
First Half of Sample {1 -900}

¢ 0 4 R 12
3month | 39557  8.062 4557 3.206
6-month | 12.799 X705 £916 3.159

[2-month | 4T.825  9.722 5491  3.865
J-year | 64515 13.073 T.358  5.158
J-year | 71.096 11371 X070 5.643

[0-vear | 75760  15.8%7  S.X97  6.206

Second Half of Sample (901 1769)

¢ 0 ! X 12
J-month | 33,795 11592 6.697 1703
G-month | 60.77% 12277 6.906 L%

12-month | 62,365 12557 T.073 1955
3-year | 6880 13.076 7333 50128
Deyear | 65780 13250 TR 50190

10-year | 67.247 13542 7oK1 5.290
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Table 6.-4: kPSS Test: Term Premium

Full Sample
¢ 0 1 8 12

12m-1m | 1.8O7  0.391 0.230 0.169
Iy-lm | 27981 5.799  3.333 2.383
ay-Im | 32850 6.753 3.856 2.742
10y-1mn | 39.207 R.OL7 1560 3.232

First Half of Sample (1 -900)
] 0 1 3 12
[2m-Im | 3.735 0848 0507 0.371
Jyv-Im | 11386 2374 1360  0.963
av-lm § 10947 2260 1.287  0.908
10v-1m | 11.240  2.301  L1.307  0.921

Second Half of Sample (901 1769)
{ 0 4 ] 12
12m-tm | 9.829 2,097  1.236 0910
Jv-lm | £2110 0 0882 0514 0.374
av-lm | 6,178 1.283  0.743  0.537
10v-Im | 9512 1.965 1133  0.816 |

Lt
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Table 6.5: KPSS Test on M2 Splits: Returns

First Break (1 -344)
f : 0 4 R 12

l-tonth © 20.548  5.164  3.041 20187
3-month | [.£315  4£760 2955 2162 .
6-month ;| 4953  2.481  1.795 1453

[2-month | 1461 0919 0.741 0.639 .
3-year | 0.106  0.070 0.060 0.053
S-year | 0.102  0.070  0.059  0.054
10-year © 0.060  0.045 0.049 0.050

Second Break (345 423)
¢ 0 t X 12

l-month 0950 0438 0.329  0.263
3-month 0363 0.294  0.231  0.234
t-month  0.0%1 0.071  0.070 0.0%6
I2-month 0143 0.105  0.107  0.140

J-vear  0.395  0.2x1 0 0284 0.330

J-yvear 0311 0.220 0.221  0.267

[0-year  0.045  0.041  0.051  0.090

Third Break (424 1255)

‘ ) 1 ¥ 12
-month 19450 1.950 2895 2.085
3-month X951 3.720  2.196 1.937
t-rnonth 3478 1.946  1.525  1.333
12-month 1.61% 1.019  0.83%7  0.847

J-vear 0331 0226 0.20%  0.215

S-vear 0340 0.251 0.295 0.220

10-year 0312 0246 0.230  0.231

Fourth Break (1256 1769)

‘ "0 1 S 12
l-month T L4518 3612 2,063 1419
Fmonth © 1L1I3 4173 2474 1763
t-month @ LA&T 2640 1.TE3 135X |
12-month © 1139 0.915 0.726  0.636 °

3-year . 0.304  0.24%  0.211 0.200 .

S-year | 0.150  0.136  0.124 0.123

l0-year ' 0.116  0.106 0.094 0.093
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Table 6.6: KPSS Test on M2 Splits: Excess Returns

First Break (1 -3-44)

f 0 4 ¥ 2
3m-1m | 1.327 1041 0.915 0.801
6m-1m | 0.306 0.222 0.195 0.186 :
12m-1m | 0.146  0.107 0.094 0.087
Jy-Im | 0.158  0.108  0.092 0.082 :
Sy-lm | 0264 0.132  0.155  0.141 ¢
10y-Im | 0.148  0.112 0.120 0.123

Second Break (345 423)
¢ 0 4 R 2
3m-lin [ 027 0135 0.124 0.149
6m-1m | 0.040  0.037 0.040  0.055 -
[2m-lm | 0.107  0.080 0.084 0.115
3v-lm | 0371 0.265  0.267  0.313
Sy-1m | 0300 0.213 0.217  0.259
10y-ln | 0.047  0.046  0.056  0.093

Third Break (12§ 1285)

] 0 1 R 12
3m-lm | 0.637 0503 0176 0.16X
6m-1m | 0.239  0.171 0.156  0.155

12t-1m | 0.339 02348 0211 0214
Jv-tm | 0149 0.102 0091 0.096
Sv-tm | 0187 0,139 0121 0.1

10y-Tm | 0.226 0.17%  0.165  0.165

Fourth Break (1236 [769)
¢ 0 4 X 12

3m-Im | 0.36% 0506 0102 0.341
6m-tm | 0.13%  0.13%  0.126 0.119
12m-1m [ 0834 0.125  0.113  0.112
3v-lm | 0356 04488 0379 0356 ¢
Sv-lm | 0176 0.162 0145 0.1
10v-1m | 0.156 0144 0128 0.127
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Table 6.7: KPSS Test on M2 Splits: Yields

First Break (1 344

; 0 1 ] 12
Fmonth | 28.020 5.14H  3.270 2322
6-month | 28.784 5895 3356 2383
12-month | 29.133 5959 3387 2402 :

3-vear | 30.164 6.158 3.493  2.470

S-year | 30.840 6208 3571 2522

10-year | 30464  6.222 3525  2.48a
Second Break (345 123)

f 0 1 x 12
3-month © 2977 0503 0.313  0.219
6-month 1 2,042 0448 0.279  0.221
12-month | 2.04%  0.460  0.291  0.239

J-yvear 1762 1046 0.646  0.501

S-vear . 3.623> L1227 0.751 0.572

10-vear -~ 6.243  1.355  0.830  0.635

Third Break (121 1285

f ()] 1 X 12
3-month 28505 5.7%0  3.263  2.297
6-month 29071 5906  3.331  2.343

12-month 31868 6447 3.631  2.551

J-vear 40750 X223 61y 3234

S-vear 43956 NE6L L9ex 30173

10-vear 49.027 9868 5520 3819
Fourth Break (12%6 1769}

t 0 4 b 12
J-month 23,107 L6140 2585 1800
t-month  23.729  L.76x 2662 1.833

12-month © 20558 £938 2761 1.92)
J-vear | 28252 5701 3.202  2.245
S-vear 30472 6.6t 3472 20440
10-yvear ' 33.894  6.361  3.x69 2.7210

7
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Table 6.8: KPSS Test on M2 Splits: Term Premium

First Break (1-34.4)
f 0 4 8 12
12m-1m | 2.051  0.451  0.268  0.198 |
Jy-lm | 1.673 0367 0.220 0.163
v-lm L2180 0.896  0.526 0385 .
0y-lm | 9.895 2.066 1.200 0.870

Second Break (345 423
f 0 1 X 12
12m-1m | 0.647  0.186  0.125  0.105
Iv-Im | 4595 1162 0.730  0.567
Sy-lm | 4649 1.IEL 0.693  0.537
10y-1m | 4094 0913 0551 0.421

Third Break (124 1285}
¢ 0 1 b 12
12m-1m | 4372 0.949  0.563  0.114
3v-lm | 8509 1.775  L.027  0.739
Sy-lm | 8300 1.720 0991 0.710
10y-Tm | X339 1.726 0993 0.71]

Fourth Break (1256 1769
' ) 1 ] 12

12m-Tm | L2566 0885 0509 0.364
3v-lm § 33348 0685 0.392 0.2%0
Sv-lm [ LTS 0,966 0546 0.386

10v-Tm | 5.732 1159 0.651  0.456
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Table 6.9: KPSS Test on Inflation Splits: Returns

First Break (1 253)

f 0 1 R 12
l-month @ 15,426 1162 2443 171
3month * 13,132 4052 2407 1.72
6-month i 3.1 1.25
12-month ; 2.5¢

J-vear ¢ 0321 0.169  0.139  0.120 :

J-year 243 0.149  0.122  0.107

10-year . 0.02%  0.057 0.067 0.070 .

Second Break (251 519)

f 0 l x 12
l-month = 6401 1495 0.872 0.621
R-month = 2312 0971 0.610  0.493
6-month 0571 0376 0312 0.2%5
12-month -~ 0.305  0.210  0.182  0.166

J-vear 0311 0220 0208 0191

J-vear 0T 0277 0257 0.251

l-year 0203 00156 0.15% 0,152

Third Break (550 1012)

] 0 ! X 12
-month 19786 5210 J.08K 2243
J-month  7.09%  3.4x3 0 2.351 1.873
t-month 2420 1375 1126 1.030
12-month  0.585  0.356  0.325  0.333

J-vear  0.05%  0.039  0.03%  0.043

Jvear  0.047  0.034  0.032  0.033

10-vear . 0.037  0.027  0.027  0.030

Fourth Break (1043 1769)

¢ 0 { X 12
l-month - 29155  7T.33% 1252 3022

J-month 1 20.395 7141 4376 3.239
6-month . 10.000 35.126 3.392 2611
[2-month | 4271 3.029 2240  [.842
Jovear | 2,629 LTTY9 1354 14X,
d-vear © L302 1432 1159 L0199 .
10-year © 1.OIT  0.906 0.758  0.683

= — —
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Table 6.10: KPSS Test on [nflation Splits: Excess Returns

First Break (1 253)

f 0 1 X 12 !
Jm-lm | 2045 1.416 1.100 0.900 :
6m-Im | 0.736 0439 0.401 0.353 .
12m-1m | 0.70%  0.398 0330 0.290 '
Iv-lm | 0.295  0.157 0.130 o0.112 :
Sv-lm | 0.295  0.182 0.150  0.132
10y-1m | 0.149  0.096 0.112 0.119 :

Second Break (254 319)
¢ 0 1 h 12
IJm-Im | 0.266  0.232 0208 0.203
6m-Im | 0.169 O 144 0.143 0.156
2m-tm | 0.1 0.0%8 0.0 0.075 .
Iv-Im | 0378 0273 0250 0.235
av-Im | 0470 0321 0.299  0.292
10v-Tm | 0.239  0.1%4 0.1%6  0.179

I'hird Break (350 1042}
¢ 0 1 X 12
3m-lm | 0.268 0229 0239 0.252
6m-tm | 0,051  0.037  0.035 0.037
12m-1m | 0.0%3  0.055  0.053 0,057
Sv-Tm  0UH47 0,100 0095 0.110
ay-lm [ 0106 0078 0,073 0.075
I0v-Tm | 0133 0.09%  0.09  0.106

Fourth Break (1013 1769
¢ 0 1 o] 12
Jm-Im | 2099 1.425  LO6 0.8N8Y
6m-lm | 1298 0953 0.719  0.610
12m-1m | 0.970  0.%24 661 0584
Bv-Tm | LS LO6Y  0x31 O0.TIT
av-lm | L8 0943 0779 0.697
[0v-1m | 0.689  0.625  0.529  0.1x3

-~
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Table 6.11: KPSS Test on Inflation Splits: Yields

First Break (1 253)

f 0 1 b 1.
3-month | 21.670 4337 2471 1.739
6-month | 20.751 4204 2370 1.671
12-month | 20428 L1411 2336  1.616

J-vear | 20.338 4127 2328 1.638

a-year | 20631 14190 2.364 1.662
10-year | 20.191 1139  2.350 1.655

(B

Second Break 234 5-19)

f 0 t X 12
3-month | 7.667 1.36%  0.893  0.634
6-month | 7.299 1197 0.855  0.610
12-month | 6.279 1.294  0.713  0.533

3-vear 1AT2 0.925 0533 0.384
J-vear | 5.296 1.096  0.632  0.153
10-vear | 7.990 1.653  0.951 0.681

Ihird Break (350 1042)

¢ 0 { X 12
3-month | 29945 6.109  3.166 2,452
6-month ! 30.747 6264 3.553 2513

12-month | 32,215 6.564 3,723 2632
J-vear | 35371 TU199  LOGY  2.X66
S-vear | 36,021 T3 LT 2916

[0-vear AT 7718 1363 3.059

Fourth Beeak (1043 17690

¢ (1] { x 12
J-month | 12767 ~69% L8940 30424
t-month | $L000  =94% 5036 3.527
12-month | +LY9%7  9.140  5.141  3.606
3-vear | 19.161 9991 56341 3.956
S-year | 502110 10212 5756 1044
10-year | 52.057 10.5375  3.958 1183
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Table 6.12: KPSS Test on Inflation Splits: Term Premium

First Break (1-253)
(0 1 3 2
Zm-Im | 0741 0181 0123 0.098
3y-Im | 7316 1704 1089 0.340
Sy-lm | 14606 3.155 1883 L.3x6
10y-lm 18337 3819 2.209  1.589

Second Break (251 549)

[ 0 1 ] 12
12m-1m : 5.968  1.338  0.789  0.577
3v-lm  17.013 3577 2,051 1454
Sv-lm o IR126 0 3746 20131 1.503
10v-Im  17.982 3679 2.085 1.169

Third Break (350 1042)
[ f 0 1 % 12
Cl2m-lmo 105290 2296 L3358 0.993
| 3v-lm 3933 0831 0.189 0.355
Sv-lm o 5030 1057 0.616  0.447
L 10v-Im 5803 1230 0715 0517

Fourth Break (1043 1769)
t 1] 4 X 12
12m-1m 3440 0733 0.4136  0.325
Jv-lm L7020 3,035 1753 126X
Sv-lhim 9082 L9614 1123 0.%03
10y-Im 6,426 1312 0716 (.529
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Table 6.13: KPSS Tests on Markov Switching Samples

3-month Returns
start end 0 4 ] 12
| BA7T 1 9884 LITR 2R 217
RS 1198 0 0.702  0.391  0.303  0.271
1199 1769 | 11.265 4307 2570 1.%38

10-vear Returns
. start end 0 4 R 12
| 2280 0.216 0141 0.157  0.156
L1769 0.223 0 0182 0.166  0.164

J-vear Excess Returns
start end 0 4 b 12
] 924 0327 0211 0.201 0.19%
925 1191 5 0.125  0.090  0.0%0 0.077
1092 1769  0.535 0398 0.324  0.294

Jmonth Yields
start end 0 1 X 12
1 X320 33250 67T BR32 O 2T00
Na3d 0 1262 16.651 3443 F9xx 1435
1263 137%  7T.611 1.722 L.O3%  0.777
1379 1510 10545 2.200 1.275  0.925
1512 1770 10888 2207 1241 0.875

{0-year Yields
start end 0 1 ¥ 12
| X35 TLATE 15.026 0 SOl S8Td
ot 125X 6.729  L3%6 0.793  0.566
1259 1322 5.210 LIS 0704 0540
CL322 0 1305 5.0T8 0 LI9s 072 0546
1506 1770 5.335  L.097  0.629  0.453

3-vear Term Premium

start  end . 0 1 X 12
1469 x.bbb 0 LR5E L1000 0.%07
470 567 . 30432 0.7 0453 0.340
S6% 679 0 7.7 L7T19 Lo 0777
650 R66 11102 2396 1409 1.036
N6T 1025 0 3596 0.78T 0485 0.376
1026 1396 0 7418 1576 0.940 0.706
1397 1513 © 8069 L7333 L0533  0.793
SI5LE 1T 2.8 0525 0309 0.229
1734 1770 ¢ 2337 0539 0.353 0.300
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Table 6.14: Cramer-von Misés Statistics

Inflation Sample Splits

f 0 4 b 12 E brks+1 3 vt
infl | 1.I15 0329 0.203 0.148 | 4 1.237
retdin | 29.368  10.756 6.828  5.105 ] 1 1.237
retlOy | 1504 1225 1123 L1l 4 1.237
xret3y | 1.931  1.338 1194 1176 | 4 1.237
vid3m | 70.439 14208 7981 5.586 | 1.237
vid10y | 70.590 14182 7.916 5.508 , 1 1.237
tpdy | 22580 1680  2.690 1923 | 4 1.237

* cv's taken from Busetti and Harvey (2001), Nyblom (1989

Markov-Switching Sample Splits

¢ 0 1 X 12 brka+1 5% ov®
ret3m | X905 3.261 2070 L[.>4& 3 1.000
retlOy | 0289 0.234 0214 0.212 ;2 0.748
xretdy | 0963  0.667  0.596 0.5%7 3 1.000
vld3m | 29385 5931 3330 2330 0 5 < 1686 (6
sIdLOy | 29469 5920 3.305 2299 1 5 < 1686 16

tpdy | 29.196  6.051 3477 2486 9 2116 < 2533 (10

* ev's taken from Busetti and Harvey (2001).

Nyblom (1959}
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Figure 6.1: Autocorrelation Functions for I{d) and AR(1) Processes
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Figure 6.2: Partial Sums for lid) and AR{1) Processes
40
il —— lud) Senes: =04
) - AR(D) Senes. 0=0).5
[ 4]
50
]
F0

Partial Sums Vv
g =

z

0 150 W0 4 M0 TS0 W TS0 12000 1380 iS00 16S0 TR [
Time Series Length

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6.3: Inflation with Estimated Break Points
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Figure 6.4: 3-Month Bond Return. State Probability
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Figure 6.53: 10-Year Return. State Probability
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Figure 6.7: 3Month Bill Yield. State Probability
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Figure 6.9: 3-Yr Bond Term Premium. State Probability
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